Skip to content

Official code implementation of "DäRF: Boosting Radiance Fields from Sparse Inputs with Monocular Depth Adaptation"(NeurIPS 2023)

License

Notifications You must be signed in to change notification settings

cvlab-kaist/DaRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DäRF: Boosting Radiance Fields from Sparse Inputs with Monocular Depth Adaptation (NeurIPS 2023)


This is official implementation of the paper "DäRF: Boosting Radiance Fields from Sparse Inputs with Monocular Depth Adaptation".

Introduction

Unlike existing work (SCADE [CVPR'23]) that distills depths by pretrained MDE to NeRF at seen view only, our DäRF fully exploits the ability of MDE by jointly optimizing NeRF and MDE at a specific scene, and distilling the monocular depth prior to NeRF at both seen and unseen views. For more details, please visit our project page!

TODO

  • Reveal the pretrained-weight on Scannet
  • TNT/in-the-wild datasets and dataloaders

Installation

An example of installation is shown below:

git clone https://github.com/KU-CVLAB/DaRF.git
cd DaRF
conda create -n DaRF python=3.8
conda activate DaRF
pip install -r requirements.txt
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

Also, you need to download pretrained MiDaS 3.0 weights(dpt_hybrid_384) on here.

And you should replace the 'dpt_pretrained_weight' part of the config file with the MiDaS pretrained weights path.

Dataset Download

You can download Scannet Dataset on here.

If you want to download data on a different path, you should replace the 'data_dirs' part of the config file with the donloaded dataset path.

Training

  • 18-20 view Training
PYTHONPATH='.' python plenoxels/main.py --config plenoxels/configs/07XX.py
  • 9-10 view Training
PYTHONPATH='.' python plenoxels/main.py --config plenoxels/configs/07XX_few.py

Evaluation / Rendering

If you want to Evaluation or Rendering, You need to replace the 'checkpoint' part of the config file with the trained weights path.

  • 18-20 view Evalutaion
PYTHONPATH='.' python plenoxels/main.py --config plenoxels/configs/07XX.py --validate-only --load_model
  • 18-20 view Rendering
PYTHONPATH='.' python plenoxels/main.py --config plenoxels/configs/07XX.py --render-only --load_model
  • 9-10 view Evalutaion
PYTHONPATH='.' python plenoxels/main.py --config plenoxels/configs/07XX_few.py --validate-only --load_model
  • 9-10 view Rendering
PYTHONPATH='.' python plenoxels/main.py --config plenoxels/configs/07XX_few.py --render-only --load_model

Acknowledgements

This code heavily borrows from K-planes.

Citation

If you use this software package, please cite our paper:

@article{song2023d,
  title={D$\backslash$" aRF: Boosting Radiance Fields from Sparse Inputs with Monocular Depth Adaptation},
  author={Song, Jiuhn and Park, Seonghoon and An, Honggyu and Cho, Seokju and Kwak, Min-Seop and Cho, Sungjin and Kim, Seungryong},
  journal={arXiv preprint arXiv:2305.19201},
  year={2023}
}

About

Official code implementation of "DäRF: Boosting Radiance Fields from Sparse Inputs with Monocular Depth Adaptation"(NeurIPS 2023)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages