Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence (NeurIPS'22)
This is the implementation of the paper "Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence" by Sunghwan Hong, Jisu Nam, Seokju Cho, Susung Hong, Sangryul Jeon, Dongbo Min and Seungryong Kim.
For more information, check out the paper on [arXiv] and the [project page].
Training code will be updated soon...
Our model NeMF is illustrated below:
git clone https://github.com/KU-CVLAB/NeMF.git
cd NeMF
conda create -n NeMF python=3.8
conda activate NeMF
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
pip install -U scikit-image
pip install git+https://github.com/albumentations-team/albumentations
pip install tensorboardX termcolor timm tqdm requests pandas einops matplotlib
- Download pre-trained weights on Link
Result on SPair-71k :
CUDA_VISIBLE_DEVICES=0 python test.py --pretrained ./SPAIR-NEMF --pretrained_file_name model_best.pth --benchmark spair
Result on PF-Pascal :
CUDA_VISIBLE_DEVICES=0 python test.py --pretrained ./PF-PASCAL-NEMF --pretrained_file_name model_best.pth --benchmark pfpascal
Result on PF-Willow :
CUDA_VISIBLE_DEVICES=0 python test.py --pretrained ./PF-PASCAL-NEMF --pretrained_file_name model_best.pth --benchmark pfwillow
We borrow code from public projects (huge thanks to all the projects). We mainly borrow code from DHPF and CATs.
If you find this research useful, please consider citing:
@inproceedings{hong2022neural,
title={Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence},
author={Sunghwan Hong and Jisu Nam and Seokju Cho and Susung Hong and Sangryul Jeon and Dongbo Min and Seungryong Kim},
year={2022}
}