-
-
Yuyang Wang, Alex Smola, Danielle C. Maddix, Jan Gasthaus, Dean Foster, Tim Januschowski, 2019. Deep Factors for Forecasting. ICML 2019. (★★★★★)
-
Danielle C. Maddix, Yuyang Wang, Alex Smola, 2018. Deep Factors with Gaussian Processes for Forecasting. arXiv.
-
Syama Sundar Rangapuram, Matthias Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, Tim Januschowski, 2018. Deep State Space Models for Time Series Forecasting. NeurIPS 2018.
-
Zheyi Pan, Yuxuan Liang, Junbo Zhang, Xiuwen Yi, Yong Yu, Yu Zheng, 2018. HyperST-Net: hypernetworks for spatio-temporal forecasting. arXiv.
-
Truc Viet Le, Richard Oentaryo, Siyuan Liu, Hoong Chuin Lau, 2017. Local Gaussian processes for efficient fine-grained traffic speed prediction. arXiv.
-
Yaguang Li, Cyrus Shahabi, 2018. A brief overview of machine learning methods for short-term traffic forecasting and future directions. ACM SIGSPATIAL, 10(1): 3-9.
-
Bing Yu, Haoteng Yin, Zhanxing Zhu, 2017. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv. (appear in IJCAI 2018)
-
Feras A. Saad, Vikash K. Mansinghka, 2018. Temporally-reweighted Chinese Restaurant Process mixtures for clustering, imputing, and forecasting multivariate time series. Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018), Lanzarote, Spain. PMLR: Volume 84.
-
Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, Yan Liu, 2018. Recurrent neural networks for multivariate time series with missing values. Scientific Reports, 8(6085).
-
Zhengping Che, Sanjay Purushotham, Guangyu Li, Bo Jiang, Yan Liu, 2018. Hierarchical deep generative models for multi-rate multivariate time series. Proceedings of the 35th International Conference on Machine Learning (ICML 2018), PMLR 80:784-793, 2018.
-
Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, Nitesh V. Chawla, 2018. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. arXiv.
-
Wang, X., Chen, C., Min, Y., He, J., Yang, B., Zhang, Y., 2018. Efficient metropolitan traffic prediction based on graph recurrent neural network. arXiv.
-
Peiguang Jing, Yuting Su, Xiao Jin, Chengqian Zhang, 2018. High-order temporal correlation model learning for time-series prediction. IEEE Transactions on Cybernetics, early access.
-
Oren Anava, Elad Hazan, Assaf Zeevi, 2015. Online time series prediction with missing data. Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), 37: 2191-2199.
-
Shanshan Feng, Gao Cong, Bo An, Yeow Meng Chee, 2017. POI2Vec: Geographical latent representation for predicting future visitors. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017).
-
Yasuko Matsubara, Yasushi Sakurai, Christos Faloutsos, Tomoharu Iwata, Masatoshi Yoshikawa, 2012. Fast mining and forecasting of complex time-stamped events. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2012).
-
Yasuko Matsubara, Yasushi Sakurai, Willem G. van Panhuis, Christos Faloutsos, 2014. FUNNEL: automatic mining of spatially coevolving epidemics. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2014).
-
Koh Takeuchi, Hisashi Kashima, Naonori Ueda, 2017. Autoregressive tensor factorization for spatio-temporal predictions. 2017 IEEE International Conference on Data Mining (ICDM 2017).
-
Shun-Yao Shih, Fan-Keng Sun, Hung-yi Lee, 2018. Temporal pattern attention for multivariate time series forecasting. arXiv.
-
Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, Linhong Zhu, Rose Yu, Yan Liu, 2016. Latent space model for road networks to predict time-varying traffic. Proceedings of the 22rd ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2016).
-
Tanwi Mallick, Prasanna Balaprakash, Eric Rask, Jane Macfarlane, 2020. Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting. arXiv:2004.08038. 2020.
-
-
-
Shigeyuki Oba, Masa-aki Sato, Ichiro Takemasa, Morito Monden, Ken-ichi Matsubara, Shin Ishii, 2003. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics, 19: 2088-2096. [Matlab code]
-
Li Qu, Li Li, Yi Zhang, Jianming Hu, 2009. PPCA-based missing data imputation for traffic flow volume: a systematical approach. IEEE Transactions on Intelligent Transportation Systems, 10(3): 512-522.
-
Li Li, Yuebiao Li, Zhiheng Li, 2013. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transportation Research Part C: Emerging Technologies, 34: 108-120.
-
-
-
Michalis K. Titsias, Magnus Rattray, Neil D. Lawrence, 2009. Markov chain Monte Carlo algorithms for Gaussian processes, Chapter.
-
Filipe Rodrigues, Kristian Henrickson, Francisco C. Pereira, 2018. Multi-output Gaussian processes for crowdsourced traffic data imputation. IEEE Transactions on Intelligent Transportation Systems, early access. [Matlab code]
-
Nicolo Fusi, Rishit Sheth, Huseyn Melih Elibol, 2017. Probabilistic matrix factorization for automated machine learning. arXiv. [Python code]
-
Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, Guillermo Sapiro, 2012. Kernelized probabilistic matrix factorization: exploiting graphs and side information. [slide]
-
John Bradshaw, Alexander G. de G. Matthews, Zoubin Ghahramani, 2017. Adversarial examples, uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks. arXiv.
-
David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, Jan Gasthaus, 2019. High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes. arXiv. (★★★★)
-
-
-
Nikhil Rao, Hsiangfu Yu, Pradeep Ravikumar, Inderjit S Dhillon, 2015. Collaborative filtering with graph information: Consistency and scalable methods. Neural Information Processing Systems (NIPS 2015). [Matlab code]
-
Hsiang-Fu Yu, Nikhil Rao, Inderjit S. Dhillon, 2016. Temporal regularized matrix factorization for high-dimensional time series prediction. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain. [Matlab code]
-
Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yu Zheng, Christina Kirsch, 2018. Network-wide crowd flow prediction of Sydney trains via customized online non-negative matrix factorization. In The 27th ACM International Conference on Information and Knowledge Management (CIKM 2018), Torino, Italy.
-
Hanbaek Lyu, Georg Menz, Deanna Needell, and Christopher Strohmeier, 2020. Applications of Online Nonnegative Matrix Factorization to Image and Time-Series Data
-
San Gultekin, John Paisley, 2019. Online Forecasting Matrix Factorization. IEEE Transactions on Signal Processing, 67(5): 1223-1236. [Python code]
-
-
-
Ruslan Salakhutdinov, Andriy Mnih, 2008. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. Proceedings of the 25th International Conference on Machine Learning (ICML 2008), Helsinki, Finland. [Matlab code (official)] [Python code] [Julia and C++ code] [Julia code]
-
Neil D. Lawrence, Raquel Urtasun, 2009. Non-linear Matrix Factorization with Gaussian Processes. ICML 2009. (★★★★★)
-
Ilya Sutskever, Ruslan Salakhutdinov, Joshua B. Tenenbaum, 2009. Modelling relational data using Bayesian clustered tensor factorization. NIPS 2009.
-
kan Saha, Vikas Sindhwani, 2012. Learning evolving and emerging topics in social media: A dynamic NMF approach with temporal regularization. WSDM 2012. (★★★★)
-
Nicolo Fusi, Rishit Sheth, Melih Huseyn Elibol, 2017. Probabilistic matrix factorization for automated machine learning. arXiv.
-
Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, Jaime G. Carbonell, 2010. Temporal collaborative filtering with Bayesian probabilistic tensor factorization. Proceedings of the 2010 SIAM International Conference on Data Mining. SIAM, pp. 211-222.
-
Qibin Zhao, Liqing Zhang, Andrzej Cichocki, 2015. Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9): 1751-1763.
-
Qibin Zhao, Liqing Zhang, Andrzej Cichocki, 2015. Bayesian sparse Tucker models for dimension reduction and tensor completion. arXiv.
-
Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen, David B. Dunsun, Lawrence Carin, 2014. Scalable Bayesian low-rank decomposition of incomplete multiway tensors. Proceedings of the 31st International Conference on Machine Learning (ICML 2014), Beijing, China.
-
Ömer Deniz Akyildiz, Theodoros Damoulas, Mark F. J. Steel, 2019. Probabilistic sequential matrix factorization. arXiv. (★★★★★)
-
-
- Feiping Nie, Hua Wang, Xiao Cai, Heng Huang, Chris Ding, 2012. Robust Matrix Completion via Joint Schatten 𝑝-Norm and ℓ𝑝-Norm Minimization. ICDM 2012.
-
-
Vassilis Kalofolias, Xavier Bresson, Michael Bronstein, Pierre Vandergheynst, 2014. Matrix completion on graphs. arXiv. (appear in NIPS 2014)
-
Rianne van den Berg, Thomas N. Kipf, Max Welling, 2018. Graph convolutional matrix completion. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2018), London, UK.
-
Federico Monti, Michael M. Bronstein, Xavier Bresson, 2017. Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks. NIPS 2017.
-
Tianyang Han, Kentaro Wada and Takashi Oguchi, 2019. Large-scale traffic data imputation using matrix completion on graphs. IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019, pp. 2252-2258.
-
-
-
Ji Liu, Przemyslaw Musialski, Peter Wonka, Jieping Ye, 2013. Tensor completion for estimating missing values in visual data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1): 208-220.
-
Zemin Zhang, Shuchin Aeron, 2017. Exact Tensor Completion Using t-SVD. IEEE Transactions on Signal Processing, 65(6): 1511 - 1526.
-
Bin Ran, Huachun Tan, Yuankai Wu, Peter J. Jin, 2016. Tensor based missing traffic data completion with spatial–temporal correlation. Physica A: Statistical Mechanics and its Applications, 446: 54-63.
-
Yaqing Wang, Quanming Yao, James T. Kwok, 2020. Efficient Low-Rank Matrix Learning by Factorizable Nonconvex Regularization. arXiv:2008.06542. 2020.
-
Kun Xie, Lele Wang, Xin Wang, Gaogang Xie, Jigang Wen, Guangxing Zhang, Jiannong Cao, Dafang Zhang, 2018. Accurate Recovery of Internet Traffic Data: A Sequential Tensor Completion Approach. IEEE/ACM Transactions on Networking, 26(2): 793 - 806.
-
-
-
Brandon Amos, 2016. Image completion with deep learning in TensorFlow. blog post. [github]
-
Jinsun Yoon, James Jordon, Mihaela van der Schaar, 2018. GAIN: missing data imputation using Generative Adversarial Nets. Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden. [supplementary materials] [Python code]
-
Ian Goodfellow, 2016. NIPS 2016 tutorial: Generative Adversarial Networks.
-
Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, Georg Langs, 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. arXiv.
-
Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, Xiaojie Yuan, 2018. Multivariate time series imputation with generative adversarial networks. 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada. [Python code]
-
Luo, Yonghong, Ying Zhang, Xiangrui Cai, and Xiaojie Yuan, 2019. E 2 GAN: end-to-end generative adversarial network for multivariate time series imputation IJCAI 2019..
-
Liu, Yukai, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue, 2019. NAOMI: Non-Autoregressive Multiresolution Sequence Imputation. NeurIPS 2019.
-
-
-
Fortuin, Vincent, Gunnar Rätsch, and Stephan Mandt, 2019. GP-VAE: Deep Probabilistic Time Series Imputation. AISTATS 2020.
-
Ivanov, Oleg, Michael Figurnov, and Dmitry Vetrov, 2019 Variational autoencoder with arbitrary conditioning. ICLR 2019.
-
Boquet, Guillem, Antoni Morell, Javier Serrano, and Jose Lopez Vicario, 2020. A variational autoencoder solution for road traffic forecasting systems: Missing data imputation, dimension reduction, model selection and anomaly detection Transportation Research Part C: Emerging Technologies 115 (2020): 102622.
-
Gregor, Karol, George Papamakarios, Frederic Besse, Lars Buesing, and Theophane Weber. Temporal difference variational auto-encoder ICLR 2019.
-
Zhiwei Deng, Rajitha Navarathna, Peter Carr, Stephan Mandt, Yisong Yue, 2017. Factorized variational autoencoders for modeling audience reactions to movies. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA.
-
Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, 2018. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. WWW 2018.
-
John T. McCoy, Steve Kroon, Lidia Auret, 2018. Variational Autoencoders for missing data imputation with application to a simulated milling circuit. IFAC-PapersOnLine, 51(21): 141-146. [Python code] [VAE demo]
-
Pierre-Alexandre Mattei, Jes Frellsen, 2018. missingIWAE: Deep generative modelling and imputation of incomplete data. Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada. [related slide]
-
-
-
Guillaume Rabusseau, Hachem Kadri, 2016. Low-rank regression with tensor responses. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.
-
Rose Yu, Yan Liu, 2016. Learning from multiway data: simple and efficient tensor regression. Proceedings of the 33rd International Conference on Machine Learning (ICML 2016), New York, NY, USA.
-
Masaaki Imaizumi, Kohei Hayashi, 2016. Doubly decomposing nonparametric tensor regression. Proceedings of the 33 rd International Conference on Machine Learning (ICML 2016), New York, NY, USA.
-
Rose Yu, Guangyu Li, Yan Liu, 2018. Tensor regression meets Gaussian processes. Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018), Lanzarote, Spain. [Matlab code]
-
Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang, 2018. Boosted sparse and low-rank tensor regression. 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
-
-
-
Liangjie Hong, 2015. Poisson matrix factorization. blog post.
-
Ali Taylan Cemgil, 2009. Bayesian inference for nonnegative matrix factorisation models. Computational intelligence and neuroscience.
-
Prem Gopalan, Jake M. Hofman, David M. Blei, 2015. Scalable recommendation with hierarchical poisson factorization. In UAI, 326-335. [C++ code]
-
Laurent Charlin, Rajesh Ranganath, James Mclnerney, 2015. Dynamic Poisson factorization. Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), Vienna, Italy. [C++ code]
-
Seyed Abbas Hosseini, Keivan Alizadeh, Ali Khodadadi, Ali Arabzadeh, Mehrdad Farajtabar, Hongyuan Zha, Hamid R. Rabiee, 2017. Recurrent Poisson factorization for temporal recommendation. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2017), Halifax, Nova Scotia Canada. [Matlab code]
-
Aaron Schein, Scott W. Linderman, Mingyuan Zhou, David M. Blei, Hanna Wallach, 2019. Poisson-Randomized Gamma Dynamical Systems. arXiv. (★★★★★)
-
-
-
Arman Hasanzadeh, Xi Liu, Nick Duffield, Krishna R. Narayanan, Byron Chigoy, 2017. A graph signal processing approach for real-time traffic prediction in transportation networks. arXiv.
-
Antonio Ortega, Pascal Frossard, Jelena Kovačević, José M. F. Moura, Pierre Vandergheynst, 2018. Graph signal processing: overview, challenges, and applications. Proceedings of the IEEE, 106(5): 808-828. [slide]
-
-
-
Structured deep models: Deep learning on graphs and beyond. slide.
-
gcn: Implementation of Graph Convolutional Networks in TensorFlow. GitHub project.
-
gated-graph-neural-network-samples: Sample Code for Gated Graph Neural Networks. GitHub project.
-
Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, Yan Liu, 2019. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. AAAI 2019.
-
Menglin Wang, Baisheng Lai, Zhongming Jin, Yufeng Lin, Xiaojia Gong, Jiangqiang Huang, Xiansheng Hua, 2018. Dynamic spatio-temporal graph-based CNNs for traffic prediction. arXiv.
-
-
Maziar S. Hemati, Matthew O. Williams, Clarence W. Rowley, 2014. Dynamic Mode Decomposition for Large and Streaming Datasets. arXiv:1406.7187. 2014.
-
Katharina Bieker, Sebastian Peitz, Steven L. Brunton, J. Nathan Kutz, Michael Dellnitz, 2019. Deep Model Predictive Control with Online Learning for Complex Physical Systems. arXiv:1905.10094. 2019.
-
Henning Lange, Steven L. Brunton, Nathan Kutz, 2020. From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction. arXiv:2004.00574. 2020. [PyTorch code]
-
Hassan Arbabi, Igor Mezic, 2017. Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator. SIAM J. Applied Dynamical Systems, 16(4): 2096–2126.
-
Shaowu Pan, Karthik Duraisamy, 2019. Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability. arXiv:1906.03663. 2019.
-
Santosh Tirunagari, Samaneh Kouchaki, Norman Poh, Miroslaw Bober, David Windridge, 2017. Dynamic Mode Decomposition for Univariate Time Series: Analysing Trends and Forecasting. 2017.
-
Jia-Chen Hua, Farzad Noorian, Duncan Moss, Philip H. W. Leong, Gemunu H. Gunaratne, 2017. High-dimensional time series prediction using kernel-based Koopman mode regression. Nonlinear Dynamics, 90: 1785–1806
-
-
-
Daniel J. Stekhoven, Peter Bühlmann, 2012. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1): 112–118. [missingpy - PyPI] or [missingpy - GitHub]
-
fancyimpute: A variety of matrix completion and imputation algorithms implemented in Python. [homepage]
-
Dimitris Bertsimas, Colin Pawlowski, Ying Daisy Zhuo, 2018. From predictive methods to missing data imputation: An optimization approach. Journal of Machine Learning Research, 18(196): 1-39.
-
Wei Cao, Dong Wang, Jian Li, Hao Zhou, Yitan Li, Lei Li, 2018. BRITS: Bidirectional Recurrent Imputation for Time Series. 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada. [Python code]
-