-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
executable file
·167 lines (143 loc) · 6.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""Running in MuJoCo Env"""
import random
import torch
import gym
import argparse
import os
import time
import numpy as np
# -------------------------------
from DQAC import SDQ
from DQAC import SDQ_CAL
# -------------------------------
from utils import replay_buffer
from spinupUtils.logx import EpochLogger
from spinupUtils.run_utils import setup_logger_kwargs
def test_agent(policy, eval_env, logger, eval_episodes=10):
for _ in range(eval_episodes):
state, done, ep_ret, ep_len = eval_env.reset(), False, 0, 0
while not done:
action = policy.select_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
ep_ret += reward
ep_len += 1
logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy", default="SAC") # Policy name
parser.add_argument("--env", default="HalfCheetah-v2") # OpenAI gym environment name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--start_timesteps", default=25e3, type=int) # Time steps initial random policy is used
parser.add_argument("--eval_freq", default=5e3, type=int) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=3e6, type=int) # Max time steps to run environment
parser.add_argument("--expl_noise", default=0.1) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=256, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99) # Discount factor
parser.add_argument("--tau", default=0.005) # Target network update rate
parser.add_argument("--policy_noise", default=0.2) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
parser.add_argument("--save_model", action="store_true") # Save model and optimizer parameters
parser.add_argument("--load_model", default="") # Model load file name, "" doesn't load, "default" uses file_name
parser.add_argument("--exp_name", type=str) # Name for algorithms
args = parser.parse_args()
file_name = f"{args.policy}_{args.env}_{args.seed}"
print(f"---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print(f"---------------------------------------")
# Make envs
env = gym.make(args.env)
eval_env = gym.make(args.env)
# Set seeds
env.seed(args.seed)
eval_env.seed(args.seed) # eval env for evaluating the agent
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"max_action": max_action,
"discount": args.discount,
"tau": args.tau,
}
# Initialize policy
# ----------------------------------------------
if args.policy == "SDQ":
# Target policy smoothing is scaled wrt the action scale
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = 1
kwargs["discount"] = 0.99
policy = SDQ.SDQ(**kwargs)
# =========================================================
elif args.policy == "SDQ_CAL":
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = 1
kwargs["beta"] = 0.019
kwargs["discount"] = 0.98
policy = SDQ_CAL.SDQ_CAL(**kwargs)
else:
raise ValueError(f"Invalid Policy: {args.policy}!")
if args.save_model and not os.path.exists("./models"):
os.makedirs("./models")
if args.load_model != "":
policy_file = file_name if args.load_model == "default" else args.load_model
if not os.path.exists(f"./models/{policy_file}"):
assert f"The loading model path of `../models/{policy_file}` does not exist! "
policy.load(f"./models/{policy_file}")
# Setup loggers
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed, datestamp=False)
logger = EpochLogger(**logger_kwargs)
_replay_buffer = replay_buffer.ReplayBuffer(state_dim, action_dim)
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num = 0
start_time = time.time()
for t in range(int(args.max_timesteps)):
episode_timesteps += 1
# Select action randomly or according to policy
if t < int(args.start_timesteps):
action = env.action_space.sample()
else:
action = (
policy.select_action(np.array(state)) \
+ np.random.normal(0, max_action * args.expl_noise, size=action_dim)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
# If env stops when reaching max-timesteps, then `done_bool = False`, else `done_bool = True`
done_bool = float(done) if episode_timesteps < env._max_episode_steps else 0
# Store data in replay buffer
_replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward
# Train agent after collecting sufficient data
if t >= int(args.start_timesteps):
policy.train(_replay_buffer, args.batch_size)
if done:
print(f"Total T: {t+1}, Episode Num: {episode_num+1}, Episode T: {episode_timesteps}, Reward: {episode_reward:.3f}")
logger.store(EpRet=episode_reward, EpLen=episode_timesteps)
# Reset environment
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
if (t + 1) % args.eval_freq == 0:
test_agent(policy, eval_env, logger)
if args.save_model:
policy.save(f"./models/{file_name}")
logger.log_tabular("EpRet", with_min_and_max=True)
logger.log_tabular("TestEpRet", with_min_and_max=True)
logger.log_tabular("EpLen", average_only=True)
logger.log_tabular("TestEpLen", average_only=True)
logger.log_tabular("TotalEnvInteracts", t+1)
logger.log_tabular("Time", time.time()-start_time)
logger.dump_tabular()