-
Notifications
You must be signed in to change notification settings - Fork 492
/
AVL.cpp
317 lines (258 loc) Β· 6.59 KB
/
AVL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
// C++ program to insert, delete and search a node in AVL tree
#include<bits/stdc++.h>
using namespace std;
// AVL tree node
class Node
{
public:
int key;
Node *left;
Node *right;
int height;
};
// function to get maximum of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
// function to get the height of the tree
int height(Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// function that allocates a new node
Node* newNode(int key)
{
Node* node = new Node();
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1;
return(node);
}
// function to right rotate subtree
Node *rightRotate(Node *y)
{
Node *x = y->left;
Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left),height(y->right)) + 1;
x->height = max(height(x->left),height(x->right)) + 1;
return x;
}
// function to left rotate subtree
Node *leftRotate(Node *x)
{
Node *y = x->right;
Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left),height(x->right)) + 1;
y->height = max(height(y->left),height(y->right)) + 1;
return y;
}
// function to get balance factor
int getBalance(Node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
// function to insert a key in node
Node* insert(Node* node, int key)
{
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else
return node;
// update the height of current node
node->height = 1 + max(height(node->left),height(node->right));
// check whether the node is balance or not
int balance = getBalance(node);
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
return node;
}
// function to get minimum key value node
Node * minValueNode(Node* node)
{
Node* current = node;
while (current->left != NULL)
current = current->left;
return current;
}
// function to delete a node with given key from subtree with given root.
Node* deleteNode(Node* root, int key)
{
if (root == NULL)
return root;
// if key to be deleted is smaller than the root's key, then it lies in left subtree
if ( key < root->key )
root->left = deleteNode(root->left, key);
// if key to be deleted is greater than the root's key, then it lies in right subtree
else if( key > root->key )
root->right = deleteNode(root->right, key);
// if key to be deleted is same as root's key,
else
{
// node with only one child or no child
if( (root->left == NULL) || (root->right == NULL) )
{
Node *temp = root->left ? root->left : root->right;
if (temp == NULL)
{
temp = root;
root = NULL;
}
else
*root = *temp;
free(temp);
}
// node with two children
else
{
Node* temp = minValueNode(root->right);
root->key = temp->key;
root->right = deleteNode(root->right,temp->key);
}
}
if (root == NULL)
return root;
// update the height of current node
root->height = 1 + max(height(root->left),height(root->right));
// check whether the node is balance or not
int balance = getBalance(root);
// Left Left Case
if (balance > 1 && getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 && getBalance(root->left) < 0)
{
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 && getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 && getBalance(root->right) > 0)
{
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// function to print preorder traversal of the tree.
void preOrder(Node *root)
{
if(root != NULL)
{
cout << root->key << " ";
preOrder(root->left);
preOrder(root->right);
}
}
bool search(Node* root, int key)
{
if (root == NULL)
return false;
// if found, return true
else if (root->key == key)
return true;
// if the current node's value is greater than key
else if (root->key > key) {
bool val = search(root->left, key);
return val;
}
// otherwise
else {
bool val = search(root->right, key);
return val;
}
}
int main()
{
Node *root = NULL;
int N;
cout<<"\nHow many numbers you want to insert ? ";
cin>>N;
cout<<"\nEnter "<<N<<" numbers in AVL tree :\n";
for(int i=0;i<N;i++){
int temp;
cin>>temp;
root = insert(root,temp);
}
/*
N=9
input value : 9 5 10 0 6 11 -1 1 2
The constructed AVL Tree would be
9
/ \
1 10
/ \ \
0 5 11
/ / \
-1 2 6
*/
cout<<"\nPreorder traversal of the constructed AVL tree is :\n";
preOrder(root);
cout<<"\n";
int num;
cout<<"\nEnter the number to delete from AVL tree :";
cin>>num;
root = deleteNode(root,num);
/* The AVL Tree after deletion
1
/ \
0 9
/ / \
-1 5 11
/ \
2 6
*/
cout<<"\nPreorder traversal after deletion of "<<num<<"\n";
preOrder(root);
cout<<"\n";
int numsearch;
cout<<"\nEnter the number to be searched ";
cin>>numsearch;
bool after = search(root,numsearch);
if (after)
cout<<"value "<<numsearch<<" found\n";
else
cout<<"value "<<numsearch<<" not found\n";
return 0;
}
/*
Time Complexity :
insert : O(logn)
delete : O(logn)
search : O(logn)
*/