-
Notifications
You must be signed in to change notification settings - Fork 408
/
wil.py
134 lines (107 loc) · 5.17 KB
/
wil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Sequence, Union
from torch import Tensor, tensor
from torchmetrics.functional.text.wil import _wil_compute, _wil_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["WordInfoLost.plot"]
class WordInfoLost(Metric):
r"""Word Information Lost (`WIL`_) is a metric of the performance of an automatic speech recognition system.
This value indicates the percentage of words that were incorrectly predicted between a set of ground-truth
sentences and a set of hypothesis sentences. The lower the value, the better the performance of the ASR system
with a WordInfoLost of 0 being a perfect score. Word Information Lost rate can then be computed as:
.. math::
wil = 1 - \frac{C}{N} + \frac{C}{P}
where:
- :math:`C` is the number of correct words,
- :math:`N` is the number of words in the reference
- :math:`P` is the number of words in the prediction
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~List`): Transcription(s) to score as a string or list of strings
- ``target`` (:class:`~List`): Reference(s) for each speech input as a string or list of strings
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``wil`` (:class:`~torch.Tensor`): A tensor with the Word Information Lost score
Args:
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Examples:
>>> from torchmetrics.text import WordInfoLost
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> wil = WordInfoLost()
>>> wil(preds, target)
tensor(0.6528)
"""
is_differentiable: bool = False
higher_is_better: bool = False
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
errors: Tensor
target_total: Tensor
preds_total: Tensor
def __init__(
self,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.add_state("errors", tensor(0.0), dist_reduce_fx="sum")
self.add_state("target_total", tensor(0.0), dist_reduce_fx="sum")
self.add_state("preds_total", tensor(0.0), dist_reduce_fx="sum")
def update(self, preds: Union[str, List[str]], target: Union[str, List[str]]) -> None:
"""Update state with predictions and targets."""
errors, target_total, preds_total = _wil_update(preds, target)
self.errors += errors
self.target_total += target_total
self.preds_total += preds_total
def compute(self) -> Tensor:
"""Calculate the Word Information Lost."""
return _wil_compute(self.errors, self.target_total, self.preds_total)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torchmetrics.text import WordInfoLost
>>> metric = WordInfoLost()
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torchmetrics.text import WordInfoLost
>>> metric = WordInfoLost()
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)