-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
deepspeed.py
923 lines (787 loc) · 40.5 KB
/
deepspeed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
import os
import platform
from contextlib import ExitStack
from itertools import chain
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Dict, List, Mapping, Optional, Tuple, Union
import torch
from lightning_utilities.core.imports import RequirementCache
from torch.nn import Module
from torch.optim import Optimizer
from typing_extensions import override
from lightning.fabric.accelerators import Accelerator, CUDAAccelerator
from lightning.fabric.plugins.environments.cluster_environment import ClusterEnvironment
from lightning.fabric.plugins.precision import Precision
from lightning.fabric.strategies.ddp import DDPStrategy
from lightning.fabric.strategies.registry import _StrategyRegistry
from lightning.fabric.strategies.strategy import _Sharded
from lightning.fabric.utilities.distributed import log
from lightning.fabric.utilities.load import _move_state_into
from lightning.fabric.utilities.rank_zero import rank_zero_info, rank_zero_warn
from lightning.fabric.utilities.seed import reset_seed
from lightning.fabric.utilities.types import _PATH
if TYPE_CHECKING:
from deepspeed import DeepSpeedEngine
_DEEPSPEED_AVAILABLE = RequirementCache("deepspeed")
# TODO(fabric): Links in the docstrings to PL-specific deepspeed user docs need to be replaced.
class DeepSpeedStrategy(DDPStrategy, _Sharded):
DEEPSPEED_ENV_VAR = "PL_DEEPSPEED_CONFIG_PATH"
def __init__(
self,
accelerator: Optional[Accelerator] = None,
zero_optimization: bool = True,
stage: int = 2,
remote_device: Optional[str] = None,
offload_optimizer: bool = False,
offload_parameters: bool = False,
offload_params_device: str = "cpu",
nvme_path: str = "/local_nvme",
params_buffer_count: int = 5,
params_buffer_size: int = 100_000_000,
max_in_cpu: int = 1_000_000_000,
offload_optimizer_device: str = "cpu",
optimizer_buffer_count: int = 4,
block_size: int = 1048576,
queue_depth: int = 8,
single_submit: bool = False,
overlap_events: bool = True,
thread_count: int = 1,
pin_memory: bool = False,
sub_group_size: int = 1_000_000_000_000,
contiguous_gradients: bool = True,
overlap_comm: bool = True,
allgather_partitions: bool = True,
reduce_scatter: bool = True,
allgather_bucket_size: int = 200_000_000,
reduce_bucket_size: int = 200_000_000,
zero_allow_untested_optimizer: bool = True,
logging_batch_size_per_gpu: Optional[int] = None,
config: Optional[Union[_PATH, Dict[str, Any]]] = None,
logging_level: int = logging.WARN,
parallel_devices: Optional[List[torch.device]] = None,
cluster_environment: Optional[ClusterEnvironment] = None,
loss_scale: float = 0,
initial_scale_power: int = 16,
loss_scale_window: int = 1000,
hysteresis: int = 2,
min_loss_scale: int = 1,
partition_activations: bool = False,
cpu_checkpointing: bool = False,
contiguous_memory_optimization: bool = False,
synchronize_checkpoint_boundary: bool = False,
load_full_weights: bool = False,
precision: Optional[Precision] = None,
process_group_backend: Optional[str] = None,
) -> None:
"""Provides capabilities to run training using the DeepSpeed library, with training optimizations for large
billion parameter models. `For more information: https://pytorch-
lightning.readthedocs.io/en/stable/advanced/model_parallel.html#deepspeed`.
.. warning:: This is an :ref:`experimental <versioning:Experimental API>` feature.
Defaults have been set to enable ZeRO-Offload and some have been taken from the link below.
These defaults have been set generally, but may require tuning for optimum performance based on your model size.
`For more information: https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training`.
Arguments:
zero_optimization: Enable ZeRO optimization. This is compatible with either ``precision="16-mixed"`` or
``precision="bf16-mixed"``.
stage: Different stages of the ZeRO Optimizer. 0 is disabled,
1 is optimizer state partitioning, 2 is optimizer+gradient state partitioning,
3 is optimizer+gradient_parameter partitioning using the infinity engine.
remote_device: Device to instantiate the model on initially (``cpu`` or ``nvme``). Defaults to GPU.
offload_optimizer: Enable offloading optimizer memory and computation to CPU or NVMe
based on ``offload_optimizer_device``.
offload_parameters: When using ZeRO Stage 3, Enable offloading parameter memory and computation
to CPU or NVMe based on ``offload_params_device``.
offload_params_device: When offloading parameters choose the device to offload to, ``cpu`` or ``nvme``.
offload_optimizer_device: When offloading optimizer state choose the device to offload to,
``cpu`` or ``nvme``.
params_buffer_count: Number of buffers in buffer pool for
parameter offloading when ``offload_params_device`` is ``nvme``.
params_buffer_size: Size of buffers in buffer pool for parameter offloading
when ``offload_params_device`` is ``nvme``.
max_in_cpu: Number of parameter elements to maintain in CPU memory when offloading to NVMe is enabled.
nvme_path: Filesystem path for NVMe device for optimizer/parameter state offloading.
optimizer_buffer_count: Number of buffers in buffer pool for optimizer state offloading
when ``offload_optimizer_device`` is set to to ``nvme``.
This should be at least the number of states maintained per parameter by the optimizer.
For example, Adam optimizer has 4 states (parameter, gradient, momentum, and variance).
block_size: When using NVMe Offloading, the I/O block size in bytes.
queue_depth: When using NVMe Offloading, the I/O queue depth.
single_submit: When using NVMe Offloading,
submit requests to storage device as multiple individual requests,
as opposed to one block of requests.
overlap_events: When using NVMe Offloading,
submit requests to storage device in an overlapped fashion
without waiting for completion of earlier requests.
thread_count: When using NVMe Offloading,
Intra-request parallelism for each read/write submitted by a user thread.
pin_memory: When using ZeRO stage 3, pin optimizer state memory on CPU.
This could boost throughput at the cost of extra memory overhead.
sub_group_size: When using ZeRO stage 3, defines the number of parameters
within a sub group to offload at a time.
Smaller numbers require more communication, but improve memory efficiency.
contiguous_gradients: Copies gradients to a continuous buffer as they are produced.
Avoids memory fragmentation during backwards. Useful when training large models.
overlap_comm: Overlap the reduction (synchronization) of gradients with the backwards computation.
This is a speed optimization when training across multiple GPUs/machines.
allgather_partitions: All gather updated parameters at the end of training step,
instead of using a series of broadcast collectives.
reduce_scatter: Use reduce/scatter instead of allreduce to average gradients.
allgather_bucket_size: Number of elements to allgather at once.
Used to limit the memory required for larger model sizes, with a tradeoff with speed.
reduce_bucket_size: Number of elements to reduce at once.
Used to limit the memory required for larger model sizes, with a tradeoff with speed.
zero_allow_untested_optimizer: Allow untested optimizers to be used with ZeRO. Currently only Adam is a
DeepSpeed supported optimizer when using ZeRO.
logging_batch_size_per_gpu: Config used in DeepSpeed to calculate verbose timing for logging
on a per sample per second basis (only displayed if logging=logging.INFO).
To obtain accurate logs when using datasets that do not support batch samplers,
set this to the actual per gpu batch size.
config: Pass in a deepspeed formatted config dict,
or path to a deepspeed config: https://www.deepspeed.ai/docs/config-json.
All defaults will be ignored if a config is passed in.
logging_level: Set logging level for deepspeed.
loss_scale: Loss scaling value for FP16 training.
0.0 results in dynamic loss scaling, otherwise static.
initial_scale_power: Power of the initial dynamic loss scale value. Loss scale is computed
by ``2^initial_scale_power``.
loss_scale_window: Window in which to raise/lower the dynamic FP16 loss scaling value.
hysteresis: FP16 Delay shift in Dynamic Loss scaling.
min_loss_scale: The minimum FP16 dynamic loss scaling value.
partition_activations: Enables partition activation when used with ZeRO stage 3 and model parallelism.
Still requires you to wrap your forward functions in deepspeed.checkpointing.checkpoint.
See `deepspeed tutorial
<https://www.deepspeed.ai/tutorials/megatron/#deepspeed-activation-checkpoints-optional>`_.
cpu_checkpointing: Offloads partitioned activations to CPU if ``partition_activations`` is enabled.
contiguous_memory_optimization: Copies partitioned activations so that they are contiguous in memory.
Not supported by all models.
synchronize_checkpoint_boundary: Insert :func:`torch.cuda.synchronize` at each checkpoint boundary.
load_full_weights: True when loading a single checkpoint file containing the model state dict
when using ZeRO Stage 3. This differs from the DeepSpeed checkpoint which contains shards
per worker.
"""
if not _DEEPSPEED_AVAILABLE:
raise ImportError(
"To use the `DeepSpeedStrategy`, you must have DeepSpeed installed."
" Install it by running `pip install -U deepspeed`."
)
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=cluster_environment,
precision=precision,
process_group_backend=process_group_backend,
)
self._backward_sync_control = None # DeepSpeed handles gradient accumulation internally
self.config = self._load_config(config)
if self.config is None:
# User has not overridden config, set defaults
self.config = self._create_default_config(
zero_optimization,
zero_allow_untested_optimizer,
logging_batch_size_per_gpu,
offload_optimizer=offload_optimizer,
offload_parameters=offload_parameters,
nvme_path=nvme_path,
offload_params_device=offload_params_device,
params_buffer_count=params_buffer_count,
params_buffer_size=params_buffer_size,
max_in_cpu=max_in_cpu,
pin_memory=pin_memory,
offload_optimizer_device=offload_optimizer_device,
optimizer_buffer_count=optimizer_buffer_count,
block_size=block_size,
queue_depth=queue_depth,
single_submit=single_submit,
overlap_events=overlap_events,
thread_count=thread_count,
partition_activations=partition_activations,
cpu_checkpointing=cpu_checkpointing,
contiguous_memory_optimization=contiguous_memory_optimization,
synchronize_checkpoint_boundary=synchronize_checkpoint_boundary,
stage=stage,
contiguous_gradients=contiguous_gradients,
overlap_comm=overlap_comm,
allgather_partitions=allgather_partitions,
reduce_scatter=reduce_scatter,
allgather_bucket_size=allgather_bucket_size,
reduce_bucket_size=reduce_bucket_size,
sub_group_size=sub_group_size,
)
import deepspeed
self._config_initialized = False
deepspeed.utils.logging.logger.setLevel(logging_level)
self.remote_device = remote_device
self.load_full_weights = load_full_weights
# default FP16 parameters.
self.loss_scale = loss_scale
self.initial_scale_power = initial_scale_power
self.loss_scale_window = loss_scale_window
self.hysteresis = hysteresis
self.min_loss_scale = min_loss_scale
self._deepspeed_engine: Optional["DeepSpeedEngine"] = None
@property
def zero_stage_3(self) -> bool:
assert isinstance(self.config, dict)
zero_optimization = self.config.get("zero_optimization")
return zero_optimization is not None and zero_optimization.get("stage") == 3
@property
@override
def distributed_sampler_kwargs(self) -> Dict[str, int]:
return {"num_replicas": self.world_size, "rank": self.global_rank}
@property
def model(self) -> "DeepSpeedEngine":
return self._deepspeed_engine
@override
def setup_module_and_optimizers(
self, module: Module, optimizers: List[Optimizer]
) -> Tuple["DeepSpeedEngine", List[Optimizer]]:
"""Set up a model and multiple optimizers together.
Currently, only a single optimizer is supported.
Return:
The model wrapped into a :class:`deepspeed.DeepSpeedEngine` and a list with a single
deepspeed optimizer.
"""
if len(optimizers) != 1:
raise ValueError(
f"Currently only one optimizer is supported with DeepSpeed."
f" Got {len(optimizers)} optimizers instead."
)
self._deepspeed_engine, optimizer = self._initialize_engine(module, optimizers[0])
self._set_deepspeed_activation_checkpointing()
return self._deepspeed_engine, [optimizer]
@override
def setup_module(self, module: Module) -> "DeepSpeedEngine":
"""Set up a module for inference (no optimizers).
For training, see :meth:`setup_module_and_optimizers`.
"""
self._deepspeed_engine, _ = self._initialize_engine(module)
return self._deepspeed_engine
@override
def setup_optimizer(self, optimizer: Optimizer) -> Optimizer:
"""Optimizers can only be set up jointly with the model in this strategy.
Please use :meth:`setup_module_and_optimizers` to set up both module and optimizer together.
"""
raise NotImplementedError(self._err_msg_joint_setup_required())
@override
def module_init_context(self, empty_init: Optional[bool] = None) -> ContextManager:
if self.zero_stage_3 and empty_init is False:
raise NotImplementedError(
f"`{empty_init=}` is not a valid choice with `DeepSpeedStrategy` when ZeRO stage 3 is enabled."
)
module_sharded_ctx = self.module_sharded_context()
stack = ExitStack()
if not self.zero_stage_3:
stack.enter_context(super().module_init_context(empty_init=empty_init))
stack.enter_context(module_sharded_ctx)
return stack
@override
def module_sharded_context(self) -> ContextManager:
# Current limitation in Fabric: The config needs to be fully determined at the time of calling the context
# manager. Later modifications through e.g. `Fabric.setup()` won't have an effect here.
import deepspeed
assert self._config_initialized
return deepspeed.zero.Init(
enabled=self.zero_stage_3,
remote_device=self.remote_device,
config_dict_or_path=self.config,
)
@override
def save_checkpoint(
self,
path: _PATH,
state: Dict[str, Union[Module, Optimizer, Any]],
storage_options: Optional[Any] = None,
filter: Optional[Dict[str, Callable[[str, Any], bool]]] = None,
) -> None:
"""Save model, optimizer, and other state in a checkpoint directory.
Args:
path: A path to where the files should be saved
state: A dictionary with contents to be saved. If the dict contains modules or optimizers, their
state-dict will be retrieved and converted automatically.
storage_options: Unused by this strategy, since it doesn't use a ``CheckpointIO`` plugin.
filter: Unsupported.
Raises:
TypeError:
If the unused ``storage_options`` gets passed.
ValueError:
When no :class:`deepspeed.DeepSpeedEngine` objects were found in the state, or when multiple
:class:`deepspeed.DeepSpeedEngine` objects were found.
"""
if storage_options is not None:
raise TypeError(
"`DeepSpeedStrategy.save_checkpoint(..., storage_options=...)` is not supported because"
" `DeepSpeedStrategy` does not use the `CheckpointIO`."
)
if filter is not None:
raise TypeError(
"`DeepSpeedStrategy.save_checkpoint(..., filter=...)` is not supported because"
" `DeepSpeedStrategy` manages the state serialization internally."
)
engines = _get_deepspeed_engines_from_state(state)
if len(engines) == 0:
raise ValueError(
"Could not find a DeepSpeed model in the provided checkpoint state. Please provide the model as"
" part of the state like so: `save_checkpoint(..., state={'model': model, ...})`. Make sure"
" you set up the model (and optimizers if any) through the strategy before saving the checkpoint."
)
if len(engines) > 1:
raise ValueError(
"Found multiple DeepSpeed engine modules in the given state. Saving checkpoints with DeepSpeed is"
" currently limited to a single model per checkpoint. To save multiple models, call the"
" save method for each model separately with a different path."
)
engine = engines[0]
# broadcast the path from rank 0 to ensure all the states are saved in a common path
path = self.broadcast(path)
# split the checkpoint into two parts:
# 1) the deepspeed engine encapsulating both the model and optionally the optimizer(s)
# 2) the rest of the user's state, which in deepspeed is called `client state`
excluded_objects = (engine, engine.optimizer) if engine.optimizer is not None else (engine,)
state = {k: v for k, v in state.items() if v not in excluded_objects}
_validate_state_keys(state)
# there might be other stateful objects unrelated to the deepspeed engine - convert them to a state_dict
state = self._convert_stateful_objects_in_state(state, filter={})
# use deepspeed's internal checkpointing function to handle partitioned weights across processes
engine.save_checkpoint(path, client_state=state, tag="checkpoint")
@override
def load_checkpoint(
self,
path: _PATH,
state: Optional[Union[Module, Optimizer, Dict[str, Union[Module, Optimizer, Any]]]] = None,
strict: bool = True,
) -> Dict[str, Any]:
"""Load the contents from a checkpoint and restore the state of the given objects.
Args:
path: A path to where the file is located
state: A dictionary of objects whose state will be restored in-place from the checkpoint path.
This should contain exactly one model, and the model must already be set up by DeepSpeed.
strict: Whether to enforce that the keys in `state` match the keys in the checkpoint.
Returns:
Dictionary with the state inside DeepSpeed's engine
Raises:
ValueError:
If no state is provided, when no :class:`deepspeed.DeepSpeedEngine` objects were found in the
state, or when multiple :class:`deepspeed.DeepSpeedEngine` objects were found.
RuntimeError:
If DeepSpeed was unable to load the checkpoint due to missing files or because the checkpoint is
not in the expected DeepSpeed format.
"""
if isinstance(state, (Module, Optimizer)) or self.load_full_weights and self.zero_stage_3:
# This code path to enables loading a checkpoint from a non-deepspeed checkpoint or from
# a consolidated checkpoint
path = self.broadcast(path)
return super().load_checkpoint(path=path, state=state, strict=strict)
if not state:
raise ValueError(
f"Got DeepSpeedStrategy.load_checkpoint(..., state={state!r}) but a state with at least "
f" a model instance to reload is required. Pass it in like so:"
" DeepSpeedStrategy.load_checkpoint(..., state={'model': model, ...})"
)
_validate_checkpoint_directory(path)
engines = _get_deepspeed_engines_from_state(state)
if len(engines) == 0:
raise ValueError(
"Could not find a DeepSpeed model in the provided checkpoint state. Please provide the model as"
" part of the state like so: `load_checkpoint(..., state={'model': model, ...})`. Make sure"
" you set up the model (and optimizers if any) through the strategy before loading the checkpoint."
)
if len(engines) > 1:
raise ValueError(
"Found multiple DeepSpeed engine modules in the given state. Saving and loading checkpoints"
" with DeepSpeed is currently limited to a single model per checkpoint. To load multiple model"
" states, call the load method for each model checkpoint separately."
)
engine = engines[0]
from deepspeed.runtime import DeepSpeedOptimizer
optimzer_state_requested = any(isinstance(item, (Optimizer, DeepSpeedOptimizer)) for item in state.values())
torch.cuda.empty_cache()
_, client_state = engine.load_checkpoint(
path,
tag="checkpoint",
load_optimizer_states=optimzer_state_requested,
load_lr_scheduler_states=False,
load_module_strict=strict,
)
if client_state is None:
raise RuntimeError(
"DeepSpeed was unable to load the checkpoint. Ensure you passed in a DeepSpeed compatible checkpoint"
" or a single checkpoint file by setting `DeepSpeedStrategy(..., load_full_weights=True)`."
)
# `Engine.load_checkpoint` adds useless keys 'optimizer' and 'lr_scheduler' to the client state; remove
# them to avoid name collision with user state
keys = set(client_state) & set(state) - {"optimizer", "lr_scheduler"}
_move_state_into(source=client_state, destination=state, keys=keys)
return client_state
@override
def clip_gradients_norm(
self,
module: "DeepSpeedEngine",
optimizer: Optimizer,
max_norm: Union[float, int],
norm_type: Union[float, int] = 2.0,
error_if_nonfinite: bool = True,
) -> torch.Tensor:
raise NotImplementedError(
"DeepSpeed handles gradient clipping automatically within the optimizer. "
"Make sure to set the `gradient_clipping` value in your Config."
)
@override
def clip_gradients_value(
self, module: "DeepSpeedEngine", optimizer: Optimizer, clip_val: Union[float, int]
) -> None:
raise NotImplementedError(
"DeepSpeed handles gradient clipping automatically within the optimizer. "
"Make sure to set the `gradient_clipping` value in your Config."
)
@classmethod
@override
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None:
strategy_registry.register("deepspeed", cls, description="Default DeepSpeed Strategy")
strategy_registry.register("deepspeed_stage_1", cls, description="DeepSpeed with ZeRO Stage 1 enabled", stage=1)
strategy_registry.register(
"deepspeed_stage_1_offload",
cls,
description="DeepSpeed with ZeRO Stage 1 and optimizer CPU Offload",
stage=1,
offload_optimizer=True,
)
strategy_registry.register("deepspeed_stage_2", cls, description="DeepSpeed with ZeRO Stage 2 enabled", stage=2)
strategy_registry.register(
"deepspeed_stage_2_offload",
cls,
description="DeepSpeed ZeRO Stage 2 and CPU Offload",
stage=2,
offload_optimizer=True,
)
strategy_registry.register("deepspeed_stage_3", cls, description="DeepSpeed ZeRO Stage 3", stage=3)
strategy_registry.register(
"deepspeed_stage_3_offload",
cls,
description="DeepSpeed ZeRO Stage 3 and CPU Offload",
stage=3,
offload_optimizer=True,
offload_parameters=True,
)
strategy_registry.register(
"deepspeed_stage_3_offload_nvme",
cls,
description="DeepSpeed ZeRO Stage 3 and NVMe Offload",
stage=3,
offload_optimizer=True,
offload_parameters=True,
remote_device="nvme",
offload_params_device="nvme",
offload_optimizer_device="nvme",
)
def _initialize_engine(
self,
model: Module,
optimizer: Optional[Optimizer] = None,
) -> Tuple["DeepSpeedEngine", Optimizer]:
"""Initialize one model and one optimizer with an optional learning rate scheduler.
This calls :func:`deepspeed.initialize` internally.
"""
import deepspeed
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
deepspeed_engine, deepspeed_optimizer, _, _ = deepspeed.initialize(
args=argparse.Namespace(device_rank=self.root_device.index),
config=self.config,
model=model,
model_parameters=model_parameters,
optimizer=optimizer,
dist_init_required=False,
)
return deepspeed_engine, deepspeed_optimizer
@override
def setup_environment(self) -> None:
if not isinstance(self.accelerator, CUDAAccelerator):
raise RuntimeError(
f"The DeepSpeed strategy is only supported on CUDA GPUs but `{self.accelerator.__class__.__name__}`"
" is used."
)
super().setup_environment()
@override
def _setup_distributed(self) -> None:
assert self.parallel_devices is not None
_validate_device_index_selection(self.parallel_devices)
reset_seed()
self._set_world_ranks()
self._init_deepspeed_distributed()
if not self._config_initialized:
self._format_config()
self._config_initialized = True
def _init_deepspeed_distributed(self) -> None:
import deepspeed
assert self.cluster_environment is not None
if platform.system() != "Windows":
# do not set env variables on windows, allow deepspeed to control setup
self._set_node_environment_variables()
log.info(
"initializing deepspeed distributed: "
f"GLOBAL_RANK: {self.global_rank}, "
f"MEMBER: {self.global_rank + 1}/{self.world_size}"
)
self._process_group_backend = self._get_process_group_backend()
deepspeed.init_distributed(self._process_group_backend, distributed_port=self.cluster_environment.main_port)
def _set_node_environment_variables(self) -> None:
assert self.cluster_environment is not None
os.environ["MASTER_ADDR"] = self.cluster_environment.main_address
os.environ["MASTER_PORT"] = str(self.cluster_environment.main_port)
os.environ["RANK"] = str(self.global_rank)
os.environ["WORLD_SIZE"] = str(self.world_size)
os.environ["LOCAL_RANK"] = str(self.local_rank)
def _set_deepspeed_activation_checkpointing(self) -> None:
import deepspeed
assert isinstance(self.config, dict)
if self.config.get("activation_checkpointing"):
checkpoint_config = self.config["activation_checkpointing"]
deepspeed.checkpointing.configure(
mpu_=None,
partition_activations=checkpoint_config.get("partition_activations"),
contiguous_checkpointing=checkpoint_config.get("contiguous_memory_optimization"),
checkpoint_in_cpu=checkpoint_config.get("cpu_checkpointing"),
profile=checkpoint_config.get("profile"),
)
def _format_config(self) -> None:
if self.config is None:
raise ValueError(
"To use DeepSpeed you must pass in a DeepSpeed config dict, or a path to a JSON config."
" See: https://lightning.ai/docs/pytorch/stable/advanced/model_parallel.html#deepspeed"
)
self.config.setdefault("train_micro_batch_size_per_gpu", 1)
_format_precision_config(
config=self.config,
precision=self.precision.precision,
loss_scale=self.loss_scale,
loss_scale_window=self.loss_scale_window,
min_loss_scale=self.min_loss_scale,
initial_scale_power=self.initial_scale_power,
hysteresis=self.hysteresis,
)
def _create_default_config(
self,
zero_optimization: bool,
zero_allow_untested_optimizer: bool,
logging_batch_size_per_gpu: Optional[int],
partition_activations: bool,
cpu_checkpointing: bool,
contiguous_memory_optimization: bool,
synchronize_checkpoint_boundary: bool,
offload_optimizer: bool,
offload_parameters: bool,
nvme_path: str,
offload_params_device: str,
params_buffer_count: int,
params_buffer_size: int,
max_in_cpu: int,
offload_optimizer_device: str,
optimizer_buffer_count: int,
pin_memory: bool,
block_size: int,
queue_depth: int,
single_submit: bool,
overlap_events: bool,
thread_count: int,
**zero_kwargs: Any,
) -> Dict:
cfg = {
"activation_checkpointing": {
"partition_activations": partition_activations,
"cpu_checkpointing": cpu_checkpointing,
"contiguous_memory_optimization": contiguous_memory_optimization,
"synchronize_checkpoint_boundary": synchronize_checkpoint_boundary,
},
"aio": {
"block_size": block_size,
"queue_depth": queue_depth,
"single_submit": single_submit,
"overlap_events": overlap_events,
"thread_count": thread_count,
},
}
if zero_optimization:
zero_config = zero_kwargs
if offload_optimizer:
zero_config["offload_optimizer"] = {
"device": offload_optimizer_device,
"nvme_path": nvme_path,
"buffer_count": optimizer_buffer_count,
"pin_memory": pin_memory,
}
if offload_parameters:
zero_config["offload_param"] = {
"device": offload_params_device,
"nvme_path": nvme_path,
"buffer_count": params_buffer_count,
"buffer_size": params_buffer_size,
"max_in_cpu": max_in_cpu,
"pin_memory": pin_memory,
}
cfg.update({
"zero_allow_untested_optimizer": zero_allow_untested_optimizer,
"zero_optimization": zero_config,
})
if logging_batch_size_per_gpu:
cfg["train_micro_batch_size_per_gpu"] = logging_batch_size_per_gpu
return cfg
def _restore_zero_state(self, module: Module, ckpt: Mapping[str, Any]) -> None:
"""Overrides the normal load_state_dict behaviour in PyTorch to ensure we gather parameters that may be sharded
across processes before loading the state dictionary when using ZeRO stage 3. This is then automatically synced
across processes.
Args:
ckpt: The ckpt file.
"""
import deepspeed
def load(module: torch.nn.Module, prefix: str = "") -> None:
missing_keys: List[str] = []
unexpected_keys: List[str] = []
error_msgs: List[str] = []
state_dict = ckpt["state_dict"]
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
# because zero3 puts placeholders in model params, this context
# manager gathers (unpartitions) the params of the current layer, then loads from
# the state dict and then re-partitions them again
with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
if self.is_global_zero:
module._load_from_state_dict(
state_dict=state_dict,
prefix=prefix,
local_metadata=local_metadata,
strict=True,
missing_keys=missing_keys,
unexpected_keys=unexpected_keys,
error_msgs=error_msgs,
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
load(module, prefix="")
def _load_config(self, config: Optional[Union[_PATH, Dict[str, Any]]]) -> Optional[Dict[str, Any]]:
if config is None and self.DEEPSPEED_ENV_VAR in os.environ:
rank_zero_info(f"Loading DeepSpeed config from set {self.DEEPSPEED_ENV_VAR} environment variable")
config = os.environ[self.DEEPSPEED_ENV_VAR]
if isinstance(config, (str, Path)):
if not os.path.isfile(config):
raise FileNotFoundError(
f"You passed in a path to a DeepSpeed config but the path does not exist: {config}"
)
with open(config) as f:
config = json.load(f)
assert isinstance(config, dict) or config is None
return config
def _get_deepspeed_engines_from_state(state: Dict[str, Any]) -> List["DeepSpeedEngine"]:
from deepspeed import DeepSpeedEngine
modules = chain(*(module.modules() for module in state.values() if isinstance(module, Module)))
return [engine for engine in modules if isinstance(engine, DeepSpeedEngine)]
def _validate_state_keys(state: Dict[str, Any]) -> None:
# DeepSpeed merges the client state into its internal engine state when saving, but it does not check for
# colliding keys from the user. We explicitly check it here:
deepspeed_internal_keys = {
"module",
"buffer_names",
"optimizer",
"param_shapes",
"lr_scheduler",
"sparse_tensor_module_names",
"skipped_steps",
"global_steps",
"global_samples",
"dp_world_size",
"mp_world_size",
"ds_config",
"ds_version",
}
colliding_keys = deepspeed_internal_keys.intersection(state.keys())
if colliding_keys:
rank_zero_warn(
"Your state has keys that collide with DeepSpeed's internal engine state. This could result in your"
" values being overwritten by DeepSpeed. Consider changing the name of these keys to something else: "
+ ", ".join(colliding_keys)
)
def _validate_device_index_selection(parallel_devices: List[torch.device]) -> None:
selected_device_indices = [device.index for device in parallel_devices]
expected_device_indices = list(range(len(parallel_devices)))
if selected_device_indices != expected_device_indices:
raise RuntimeError(
f"The selected device indices {selected_device_indices!r} don't match the local rank values of processes."
" If you need to select GPUs at a specific index, set the `CUDA_VISIBLE_DEVICES` environment variable"
f" instead. For example: `CUDA_VISIBLE_DEVICES={','.join(str(i) for i in selected_device_indices)}`."
)
def _is_deepspeed_checkpoint(path: Path) -> bool:
"""Heuristic check whether the path points to a top-level DeepSpeed checkpoint directory."""
return path.is_dir() and (path / "checkpoint").is_dir()
def _validate_checkpoint_directory(path: _PATH) -> None:
"""Validates that the path points to a DeepSpeed checkpoint directory and suggests fixes for user error."""
# Example DeepSpeed checkpoint directory:
#
# epoch=5-step=10999.ckpt
# ├── checkpoint
# │ ├── zero_pp_rank_0_mp_rank_00_model_states.pt
# │ ├── zero_pp_rank_0_mp_rank_00_optim_states.pt
# │ ├── zero_pp_rank_1_mp_rank_00_model_states.pt
# │ └── zero_pp_rank_1_mp_rank_00_optim_states.pt
# ├── latest
# └── zero_to_fp32.py
path = Path(path)
path_is_ds_checkpoint = _is_deepspeed_checkpoint(path)
default_message = f"The provided path is not a valid DeepSpeed checkpoint: {path}"
if not path_is_ds_checkpoint:
# Case 1: User may have accidentally passed the subfolder "checkpoint"
parent_is_ds_checkpoint = _is_deepspeed_checkpoint(path.parent)
if parent_is_ds_checkpoint:
raise FileNotFoundError(
f"{default_message}. It looks like you passed the path to a subfolder."
f" Try to load using this parent directory instead: {path.parent}"
)
# Case 2: User may have accidentally passed the path to a file inside the "checkpoint" subfolder
parent_parent_is_ds_checkpoint = path.is_file() and _is_deepspeed_checkpoint(path.parent.parent)
if parent_parent_is_ds_checkpoint:
raise FileNotFoundError(
f"{default_message}. It looks like you passed the path to a file inside a DeepSpeed checkpoint folder."
f" Try to load using this parent directory instead: {path.parent.parent}"
)
raise FileNotFoundError(default_message)
def _format_precision_config(
config: Dict[str, Any],
precision: str,
loss_scale: float,
loss_scale_window: int,
min_loss_scale: int,
initial_scale_power: int,
hysteresis: int,
) -> None:
if "fp16" not in config and precision in ("16-mixed", "16-true"):
# FP16 is a DeepSpeed standalone AMP implementation
rank_zero_info("Enabling DeepSpeed FP16. Model parameters and inputs will be cast to `float16`.")
config["fp16"] = {
"enabled": True,
"loss_scale": loss_scale,
"initial_scale_power": initial_scale_power,
"loss_scale_window": loss_scale_window,
"hysteresis": hysteresis,
"min_loss_scale": min_loss_scale,
}
elif "bf16" not in config and precision in ("bf16-mixed", "bf16-true"):
rank_zero_info("Enabling DeepSpeed BF16. Model parameters and inputs will be cast to `bfloat16`.")
config["bf16"] = {"enabled": True}