-
Notifications
You must be signed in to change notification settings - Fork 3
/
RH_RF22.cpp
739 lines (656 loc) · 24.4 KB
/
RH_RF22.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
// RH_RF22.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: RH_RF22.cpp,v 1.27 2017/01/12 23:58:00 mikem Exp $
#include <RH_RF22.h>
// Interrupt vectors for the 2 Arduino interrupt pins
// Each interrupt can be handled by a different instance of RH_RF22, allowing you to have
// 2 RH_RF22s per Arduino
RH_RF22* RH_RF22::_deviceForInterrupt[RH_RF22_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t RH_RF22::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// These are indexed by the values of ModemConfigChoice
// Canned modem configurations generated with
// http://www.hoperf.com/upload/rf/RH_RF22B%2023B%2031B%2042B%2043B%20Register%20Settings_RevB1-v5.xls
// Stored in flash (program) memory to save SRAM
PROGMEM static const RH_RF22::ModemConfig MODEM_CONFIG_TABLE[] =
{
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x00, 0x08 }, // Unmodulated carrier
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x33, 0x08 }, // FSK, PN9 random modulation, 2, 5
// All the following enable FIFO with reg 71
// 1c, 1f, 20, 21, 22, 23, 24, 25, 2c, 2d, 2e, 58, 69, 6e, 6f, 70, 71, 72
// FSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x22, 0x08 }, // 2, 5
{ 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x22, 0x3a }, // 2.4, 36
{ 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x22, 0x48 }, // 4.8, 45
{ 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x22, 0x48 }, // 9.6, 45
{ 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x22, 0x0f }, // 19.2, 9.6
{ 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x22, 0x1f }, // 38.4, 19.6
{ 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x22, 0x2e }, // 57.6. 28.8
{ 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x22, 0xc8 }, // 125, 125
{ 0x2b, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x09, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x04 }, // 512 baud, FSK, 2.5 Khz fd for POCSAG compatibility
{ 0x27, 0x03, 0xa1, 0xe0, 0x10, 0xc7, 0x00, 0x06, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x04, 0x32, 0x2c, 0x22, 0x07 }, // 512 baud, FSK, 4.5 Khz fd for POCSAG compatibility
// GFSK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
// These differ from FSK only in register 71, for the modulation type
{ 0x2b, 0x03, 0xf4, 0x20, 0x41, 0x89, 0x00, 0x36, 0x40, 0x0a, 0x1d, 0x80, 0x60, 0x10, 0x62, 0x2c, 0x23, 0x08 }, // 2, 5
{ 0x1b, 0x03, 0x41, 0x60, 0x27, 0x52, 0x00, 0x07, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x23, 0x3a }, // 2.4, 36
{ 0x1d, 0x03, 0xa1, 0x20, 0x4e, 0xa5, 0x00, 0x13, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x23, 0x48 }, // 4.8, 45
{ 0x1e, 0x03, 0xd0, 0x00, 0x9d, 0x49, 0x00, 0x45, 0x40, 0x0a, 0x20, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x23, 0x48 }, // 9.6, 45
{ 0x2b, 0x03, 0x34, 0x02, 0x75, 0x25, 0x07, 0xff, 0x40, 0x0a, 0x1b, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x23, 0x0f }, // 19.2, 9.6
{ 0x02, 0x03, 0x68, 0x01, 0x3a, 0x93, 0x04, 0xd5, 0x40, 0x0a, 0x1e, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x23, 0x1f }, // 38.4, 19.6
{ 0x06, 0x03, 0x45, 0x01, 0xd7, 0xdc, 0x07, 0x6e, 0x40, 0x0a, 0x2d, 0x80, 0x60, 0x0e, 0xbf, 0x0c, 0x23, 0x2e }, // 57.6. 28.8
{ 0x8a, 0x03, 0x60, 0x01, 0x55, 0x55, 0x02, 0xad, 0x40, 0x0a, 0x50, 0x80, 0x60, 0x20, 0x00, 0x0c, 0x23, 0xc8 }, // 125, 125
// OOK, No Manchester, Max Rb err <1%, Xtal Tol 20ppm
{ 0x51, 0x03, 0x68, 0x00, 0x3a, 0x93, 0x01, 0x3d, 0x2c, 0x11, 0x28, 0x80, 0x60, 0x09, 0xd5, 0x2c, 0x21, 0x08 }, // 1.2, 75
{ 0xc8, 0x03, 0x39, 0x20, 0x68, 0xdc, 0x00, 0x6b, 0x2a, 0x08, 0x2a, 0x80, 0x60, 0x13, 0xa9, 0x2c, 0x21, 0x08 }, // 2.4, 335
{ 0xc8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x29, 0x04, 0x29, 0x80, 0x60, 0x27, 0x52, 0x2c, 0x21, 0x08 }, // 4.8, 335
{ 0xb8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x82, 0x29, 0x80, 0x60, 0x4e, 0xa5, 0x2c, 0x21, 0x08 }, // 9.6, 335
{ 0xa8, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x41, 0x29, 0x80, 0x60, 0x9d, 0x49, 0x2c, 0x21, 0x08 }, // 19.2, 335
{ 0x98, 0x03, 0x9c, 0x00, 0xd1, 0xb7, 0x00, 0xd4, 0x28, 0x20, 0x29, 0x80, 0x60, 0x09, 0xd5, 0x0c, 0x21, 0x08 }, // 38.4, 335
{ 0x98, 0x03, 0x96, 0x00, 0xda, 0x74, 0x00, 0xdc, 0x28, 0x1f, 0x29, 0x80, 0x60, 0x0a, 0x3d, 0x0c, 0x21, 0x08 }, // 40, 335
};
RH_RF22::RH_RF22(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI& spi)
:
RHSPIDriver(slaveSelectPin, spi)
{
_interruptPin = interruptPin;
_idleMode = RH_RF22_XTON; // Default idle state is READY mode
_polynomial = CRC_16_IBM; // Historical
_myInterruptIndex = 0xff; // Not allocated yet
}
void RH_RF22::setIdleMode(uint8_t idleMode)
{
_idleMode = idleMode;
}
bool RH_RF22::init()
{
if (!RHSPIDriver::init())
return false;
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
#endif
// Software reset the device
reset();
// Get the device type and check it
// This also tests whether we are really connected to a device
_deviceType = spiRead(RH_RF22_REG_00_DEVICE_TYPE);
if ( _deviceType != RH_RF22_DEVICE_TYPE_RX_TRX
&& _deviceType != RH_RF22_DEVICE_TYPE_TX)
{
return false;
}
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
// Enable interrupt output on the radio. Interrupt line will now go high until
// an interrupt occurs
spiWrite(RH_RF22_REG_05_INTERRUPT_ENABLE1, RH_RF22_ENTXFFAEM | RH_RF22_ENRXFFAFULL | RH_RF22_ENPKSENT | RH_RF22_ENPKVALID | RH_RF22_ENCRCERROR | RH_RF22_ENFFERR);
spiWrite(RH_RF22_REG_06_INTERRUPT_ENABLE2, RH_RF22_ENPREAVAL);
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// On some devices, notably most Arduinos, the interrupt pin passed in is actually the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knowledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff)
{
// First run, no interrupt allocated yet
if (_interruptCount <= RH_RF22_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, FALLING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, FALLING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, FALLING);
else
return false; // Too many devices, not enough interrupt vectors
setModeIdle();
clearTxBuf();
clearRxBuf();
// Most of these are the POR default
spiWrite(RH_RF22_REG_7D_TX_FIFO_CONTROL2, RH_RF22_TXFFAEM_THRESHOLD);
spiWrite(RH_RF22_REG_7E_RX_FIFO_CONTROL, RH_RF22_RXFFAFULL_THRESHOLD);
spiWrite(RH_RF22_REG_30_DATA_ACCESS_CONTROL, RH_RF22_ENPACRX | RH_RF22_ENPACTX | RH_RF22_ENCRC | (_polynomial & RH_RF22_CRC));
// Configure the message headers
// Here we set up the standard packet format for use by the RH_RF22 library
// 8 nibbles preamble
// 2 SYNC words 2d, d4
// Header length 4 (to, from, id, flags)
// 1 octet of data length (0 to 255)
// 0 to 255 octets data
// 2 CRC octets as CRC16(IBM), computed on the header, length and data
// On reception the to address is check for validity against RH_RF22_REG_3F_CHECK_HEADER3
// or the broadcast address of 0xff
// If no changes are made after this, the transmitted
// to address will be 0xff, the from address will be 0xff
// and all such messages will be accepted. This permits the out-of the box
// RH_RF22 config to act as an unaddresed, unreliable datagram service
spiWrite(RH_RF22_REG_32_HEADER_CONTROL1, RH_RF22_BCEN_HEADER3 | RH_RF22_HDCH_HEADER3);
spiWrite(RH_RF22_REG_33_HEADER_CONTROL2, RH_RF22_HDLEN_4 | RH_RF22_SYNCLEN_2);
setPreambleLength(8);
uint8_t syncwords[] = { 0x2d, 0xd4 };
setSyncWords(syncwords, sizeof(syncwords));
setPromiscuous(false);
// Set some defaults. An innocuous ISM frequency, and reasonable pull-in
setFrequency(434.0, 0.05);
// setFrequency(900.0);
// Some slow, reliable default speed and modulation
setModemConfig(FSK_Rb2_4Fd36);
// setModemConfig(FSK_Rb125Fd125);
setGpioReversed(false);
// Lowish power
setTxPower(RH_RF22_TXPOW_8DBM);
return true;
}
// C++ level interrupt handler for this instance
void RH_RF22::handleInterrupt()
{
uint8_t _lastInterruptFlags[2];
// Read the interrupt flags which clears the interrupt
spiBurstRead(RH_RF22_REG_03_INTERRUPT_STATUS1, _lastInterruptFlags, 2);
#if 0
// DEVELOPER TESTING ONLY
// Caution: Serial printing in this interrupt routine can cause mysterious crashes
Serial.print("interrupt ");
Serial.print(_lastInterruptFlags[0], HEX);
Serial.print(" ");
Serial.println(_lastInterruptFlags[1], HEX);
if (_lastInterruptFlags[0] == 0 && _lastInterruptFlags[1] == 0)
Serial.println("FUNNY: no interrupt!");
#endif
#if 0
// DEVELOPER TESTING ONLY
// TESTING: fake an RH_RF22_IFFERROR
static int counter = 0;
if (_lastInterruptFlags[0] & RH_RF22_IPKSENT && counter++ == 10)
{
_lastInterruptFlags[0] = RH_RF22_IFFERROR;
counter = 0;
}
#endif
if (_lastInterruptFlags[0] & RH_RF22_IFFERROR)
{
resetFifos(); // Clears the interrupt
if (_mode == RHModeTx)
restartTransmit();
else if (_mode == RHModeRx)
clearRxBuf();
// Serial.println("IFFERROR");
}
// Caution, any delay here may cause a FF underflow or overflow
if (_lastInterruptFlags[0] & RH_RF22_ITXFFAEM)
{
// See if more data has to be loaded into the Tx FIFO
sendNextFragment();
// Serial.println("ITXFFAEM");
}
if (_lastInterruptFlags[0] & RH_RF22_IRXFFAFULL)
{
// Caution, any delay here may cause a FF overflow
// Read some data from the Rx FIFO
readNextFragment();
// Serial.println("IRXFFAFULL");
}
if (_lastInterruptFlags[0] & RH_RF22_IEXT)
{
// This is not enabled by the base code, but users may want to enable it
handleExternalInterrupt();
// Serial.println("IEXT");
}
if (_lastInterruptFlags[1] & RH_RF22_IWUT)
{
// This is not enabled by the base code, but users may want to enable it
handleWakeupTimerInterrupt();
// Serial.println("IWUT");
}
if (_lastInterruptFlags[0] & RH_RF22_IPKSENT)
{
// Serial.println("IPKSENT");
_txGood++;
// Transmission does not automatically clear the tx buffer.
// Could retransmit if we wanted
// RH_RF22 transitions automatically to Idle
_mode = RHModeIdle;
}
if (_lastInterruptFlags[0] & RH_RF22_IPKVALID)
{
uint8_t len = spiRead(RH_RF22_REG_4B_RECEIVED_PACKET_LENGTH);
// Serial.println("IPKVALID");
// May have already read one or more fragments
// Get any remaining unread octets, based on the expected length
// First make sure we dont overflow the buffer in the case of a stupid length
// or partial bad receives
if ( len > RH_RF22_MAX_MESSAGE_LEN
|| len < _bufLen)
{
_rxBad++;
_mode = RHModeIdle;
clearRxBuf();
return; // Hmmm receiver buffer overflow.
}
spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, len - _bufLen);
_rxHeaderTo = spiRead(RH_RF22_REG_47_RECEIVED_HEADER3);
_rxHeaderFrom = spiRead(RH_RF22_REG_48_RECEIVED_HEADER2);
_rxHeaderId = spiRead(RH_RF22_REG_49_RECEIVED_HEADER1);
_rxHeaderFlags = spiRead(RH_RF22_REG_4A_RECEIVED_HEADER0);
_rxGood++;
_bufLen = len;
_mode = RHModeIdle;
_rxBufValid = true;
}
if (_lastInterruptFlags[0] & RH_RF22_ICRCERROR)
{
// Serial.println("ICRCERR");
_rxBad++;
clearRxBuf();
resetRxFifo();
_mode = RHModeIdle;
setModeRx(); // Keep trying
}
if (_lastInterruptFlags[1] & RH_RF22_IPREAVAL)
{
// Serial.println("IPREAVAL");
_lastRssi = (int8_t)(-120 + ((spiRead(RH_RF22_REG_26_RSSI) / 2)));
_lastPreambleTime = millis();
resetRxFifo();
clearRxBuf();
}
}
// These are low level functions that call the interrupt handler for the correct
// instance of RH_RF22.
// 3 interrupts allows us to have 3 different devices
void RH_RF22::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
}
void RH_RF22::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
}
void RH_RF22::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
}
void RH_RF22::reset()
{
spiWrite(RH_RF22_REG_07_OPERATING_MODE1, RH_RF22_SWRES);
// Wait for it to settle
delay(1); // SWReset time is nominally 100usec
}
uint8_t RH_RF22::statusRead()
{
return spiRead(RH_RF22_REG_02_DEVICE_STATUS);
}
uint8_t RH_RF22::adcRead(uint8_t adcsel,
uint8_t adcref ,
uint8_t adcgain,
uint8_t adcoffs)
{
uint8_t configuration = adcsel | adcref | (adcgain & RH_RF22_ADCGAIN);
spiWrite(RH_RF22_REG_0F_ADC_CONFIGURATION, configuration | RH_RF22_ADCSTART);
spiWrite(RH_RF22_REG_10_ADC_SENSOR_AMP_OFFSET, adcoffs);
// Conversion time is nominally 305usec
// Wait for the DONE bit
while (!(spiRead(RH_RF22_REG_0F_ADC_CONFIGURATION) & RH_RF22_ADCDONE))
;
// Return the value
return spiRead(RH_RF22_REG_11_ADC_VALUE);
}
uint8_t RH_RF22::temperatureRead(uint8_t tsrange, uint8_t tvoffs)
{
spiWrite(RH_RF22_REG_12_TEMPERATURE_SENSOR_CALIBRATION, tsrange | RH_RF22_ENTSOFFS);
spiWrite(RH_RF22_REG_13_TEMPERATURE_VALUE_OFFSET, tvoffs);
return adcRead(RH_RF22_ADCSEL_INTERNAL_TEMPERATURE_SENSOR | RH_RF22_ADCREF_BANDGAP_VOLTAGE);
}
uint16_t RH_RF22::wutRead()
{
uint8_t buf[2];
spiBurstRead(RH_RF22_REG_17_WAKEUP_TIMER_VALUE1, buf, 2);
return ((uint16_t)buf[0] << 8) | buf[1]; // Dont rely on byte order
}
// RFM-22 doc appears to be wrong: WUT for wtm = 10000, r, = 0, d = 0 is about 1 sec
void RH_RF22::setWutPeriod(uint16_t wtm, uint8_t wtr, uint8_t wtd)
{
uint8_t period[3];
period[0] = ((wtr & 0xf) << 2) | (wtd & 0x3);
period[1] = wtm >> 8;
period[2] = wtm & 0xff;
spiBurstWrite(RH_RF22_REG_14_WAKEUP_TIMER_PERIOD1, period, sizeof(period));
}
// Returns true if centre + (fhch * fhs) is within limits
// Caution, different versions of the RH_RF22 support different max freq
// so YMMV
bool RH_RF22::setFrequency(float centre, float afcPullInRange)
{
uint8_t fbsel = RH_RF22_SBSEL;
uint8_t afclimiter;
if (centre < 240.0 || centre > 960.0) // 930.0 for early silicon
return false;
if (centre >= 480.0)
{
if (afcPullInRange < 0.0 || afcPullInRange > 0.318750)
return false;
centre /= 2;
fbsel |= RH_RF22_HBSEL;
afclimiter = afcPullInRange * 1000000.0 / 1250.0;
}
else
{
if (afcPullInRange < 0.0 || afcPullInRange > 0.159375)
return false;
afclimiter = afcPullInRange * 1000000.0 / 625.0;
}
centre /= 10.0;
float integerPart = floor(centre);
float fractionalPart = centre - integerPart;
uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23
fbsel |= fb;
uint16_t fc = fractionalPart * 64000;
spiWrite(RH_RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT
spiWrite(RH_RF22_REG_74_FREQUENCY_OFFSET2, 0);
spiWrite(RH_RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel);
spiWrite(RH_RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8);
spiWrite(RH_RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff);
spiWrite(RH_RF22_REG_2A_AFC_LIMITER, afclimiter);
return !(statusRead() & RH_RF22_FREQERR);
}
// Step size in 10kHz increments
// Returns true if centre + (fhch * fhs) is within limits
bool RH_RF22::setFHStepSize(uint8_t fhs)
{
spiWrite(RH_RF22_REG_7A_FREQUENCY_HOPPING_STEP_SIZE, fhs);
return !(statusRead() & RH_RF22_FREQERR);
}
// Adds fhch * fhs to centre frequency
// Returns true if centre + (fhch * fhs) is within limits
bool RH_RF22::setFHChannel(uint8_t fhch)
{
spiWrite(RH_RF22_REG_79_FREQUENCY_HOPPING_CHANNEL_SELECT, fhch);
return !(statusRead() & RH_RF22_FREQERR);
}
uint8_t RH_RF22::rssiRead()
{
return spiRead(RH_RF22_REG_26_RSSI);
}
uint8_t RH_RF22::ezmacStatusRead()
{
return spiRead(RH_RF22_REG_31_EZMAC_STATUS);
}
void RH_RF22::setOpMode(uint8_t mode)
{
spiWrite(RH_RF22_REG_07_OPERATING_MODE1, mode);
}
void RH_RF22::setModeIdle()
{
if (_mode != RHModeIdle)
{
setOpMode(_idleMode);
_mode = RHModeIdle;
}
}
bool RH_RF22::sleep()
{
if (_mode != RHModeSleep)
{
setOpMode(0);
_mode = RHModeSleep;
}
return true;
}
void RH_RF22::setModeRx()
{
if (_mode != RHModeRx)
{
setOpMode(_idleMode | RH_RF22_RXON);
_mode = RHModeRx;
}
}
void RH_RF22::setModeTx()
{
if (_mode != RHModeTx)
{
setOpMode(_idleMode | RH_RF22_TXON);
// Hmmm, if you dont clear the RX FIFO here, then it appears that going
// to transmit mode in the middle of a receive can corrupt the
// RX FIFO
resetRxFifo();
_mode = RHModeTx;
}
}
void RH_RF22::setTxPower(uint8_t power)
{
spiWrite(RH_RF22_REG_6D_TX_POWER, power | RH_RF22_LNA_SW); // On RF23, LNA_SW must be set.
}
// Sets registers from a canned modem configuration structure
void RH_RF22::setModemRegisters(const ModemConfig* config)
{
spiWrite(RH_RF22_REG_1C_IF_FILTER_BANDWIDTH, config->reg_1c);
spiWrite(RH_RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE, config->reg_1f);
spiBurstWrite(RH_RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE, &config->reg_20, 6);
spiBurstWrite(RH_RF22_REG_2C_OOK_COUNTER_VALUE_1, &config->reg_2c, 3);
spiWrite(RH_RF22_REG_58_CHARGE_PUMP_CURRENT_TRIMMING, config->reg_58);
spiWrite(RH_RF22_REG_69_AGC_OVERRIDE1, config->reg_69);
spiBurstWrite(RH_RF22_REG_6E_TX_DATA_RATE1, &config->reg_6e, 5);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
bool RH_RF22::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
RH_RF22::ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF22::ModemConfig));
setModemRegisters(&cfg);
return true;
}
// REVISIT: top bit is in Header Control 2 0x33
void RH_RF22::setPreambleLength(uint8_t nibbles)
{
spiWrite(RH_RF22_REG_34_PREAMBLE_LENGTH, nibbles);
}
// Caution doesnt set sync word len in Header Control 2 0x33
void RH_RF22::setSyncWords(const uint8_t* syncWords, uint8_t len)
{
spiBurstWrite(RH_RF22_REG_36_SYNC_WORD3, syncWords, len);
}
void RH_RF22::clearRxBuf()
{
ATOMIC_BLOCK_START;
_bufLen = 0;
_rxBufValid = false;
ATOMIC_BLOCK_END;
}
bool RH_RF22::available()
{
if (!_rxBufValid)
{
if (_mode == RHModeTx)
return false;
setModeRx(); // Make sure we are receiving
}
return _rxBufValid;
}
bool RH_RF22::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
ATOMIC_BLOCK_START;
if (*len > _bufLen)
*len = _bufLen;
memcpy(buf, _buf, *len);
ATOMIC_BLOCK_END;
}
clearRxBuf();
// printBuffer("recv:", buf, *len);
return true;
}
void RH_RF22::clearTxBuf()
{
ATOMIC_BLOCK_START;
_bufLen = 0;
_txBufSentIndex = 0;
ATOMIC_BLOCK_END;
}
void RH_RF22::startTransmit()
{
sendNextFragment(); // Actually the first fragment
spiWrite(RH_RF22_REG_3E_PACKET_LENGTH, _bufLen); // Total length that will be sent
setModeTx(); // Start the transmitter, turns off the receiver
}
// Restart the transmission of a packet that had a problem
void RH_RF22::restartTransmit()
{
_mode = RHModeIdle;
_txBufSentIndex = 0;
// Serial.println("Restart");
startTransmit();
}
bool RH_RF22::send(const uint8_t* data, uint8_t len)
{
bool ret = true;
waitPacketSent();
if (!waitCAD())
return false; // Check channel activity
ATOMIC_BLOCK_START;
spiWrite(RH_RF22_REG_3A_TRANSMIT_HEADER3, _txHeaderTo);
spiWrite(RH_RF22_REG_3B_TRANSMIT_HEADER2, _txHeaderFrom);
spiWrite(RH_RF22_REG_3C_TRANSMIT_HEADER1, _txHeaderId);
spiWrite(RH_RF22_REG_3D_TRANSMIT_HEADER0, _txHeaderFlags);
if (!fillTxBuf(data, len))
ret = false;
else
startTransmit();
ATOMIC_BLOCK_END;
// printBuffer("send:", data, len);
return ret;
}
bool RH_RF22::fillTxBuf(const uint8_t* data, uint8_t len)
{
clearTxBuf();
if (!len)
return false;
return appendTxBuf(data, len);
}
bool RH_RF22::appendTxBuf(const uint8_t* data, uint8_t len)
{
if (((uint16_t)_bufLen + len) > RH_RF22_MAX_MESSAGE_LEN)
return false;
ATOMIC_BLOCK_START;
memcpy(_buf + _bufLen, data, len);
_bufLen += len;
ATOMIC_BLOCK_END;
// printBuffer("txbuf:", _buf, _bufLen);
return true;
}
// Assumption: there is currently <= RH_RF22_TXFFAEM_THRESHOLD bytes in the Tx FIFO
void RH_RF22::sendNextFragment()
{
if (_txBufSentIndex < _bufLen)
{
// Some left to send?
uint8_t len = _bufLen - _txBufSentIndex;
// But dont send too much
if (len > (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1))
len = (RH_RF22_FIFO_SIZE - RH_RF22_TXFFAEM_THRESHOLD - 1);
spiBurstWrite(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _txBufSentIndex, len);
// printBuffer("frag:", _buf + _txBufSentIndex, len);
_txBufSentIndex += len;
}
}
// Assumption: there are at least RH_RF22_RXFFAFULL_THRESHOLD in the RX FIFO
// That means it should only be called after a RXFFAFULL interrupt
void RH_RF22::readNextFragment()
{
if (((uint16_t)_bufLen + RH_RF22_RXFFAFULL_THRESHOLD) > RH_RF22_MAX_MESSAGE_LEN)
return; // Hmmm receiver overflow. Should never occur
// Read the RH_RF22_RXFFAFULL_THRESHOLD octets that should be there
spiBurstRead(RH_RF22_REG_7F_FIFO_ACCESS, _buf + _bufLen, RH_RF22_RXFFAFULL_THRESHOLD);
_bufLen += RH_RF22_RXFFAFULL_THRESHOLD;
}
// Clear the FIFOs
void RH_RF22::resetFifos()
{
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX | RH_RF22_FFCLRTX);
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
}
// Clear the Rx FIFO
void RH_RF22::resetRxFifo()
{
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRRX);
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
_rxBufValid = false;
}
// CLear the TX FIFO
void RH_RF22::resetTxFifo()
{
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, RH_RF22_FFCLRTX);
spiWrite(RH_RF22_REG_08_OPERATING_MODE2, 0);
}
// Default implmentation does nothing. Override if you wish
void RH_RF22::handleExternalInterrupt()
{
}
// Default implmentation does nothing. Override if you wish
void RH_RF22::handleWakeupTimerInterrupt()
{
}
void RH_RF22::setPromiscuous(bool promiscuous)
{
RHSPIDriver::setPromiscuous(promiscuous);
spiWrite(RH_RF22_REG_43_HEADER_ENABLE3, promiscuous ? 0x00 : 0xff);
}
bool RH_RF22::setCRCPolynomial(CRCPolynomial polynomial)
{
if (polynomial >= CRC_CCITT &&
polynomial <= CRC_Biacheva)
{
_polynomial = polynomial;
return true;
}
else
return false;
}
uint8_t RH_RF22::maxMessageLength()
{
return RH_RF22_MAX_MESSAGE_LEN;
}
void RH_RF22::setThisAddress(uint8_t thisAddress)
{
RHSPIDriver::setThisAddress(thisAddress);
spiWrite(RH_RF22_REG_3F_CHECK_HEADER3, thisAddress);
}
uint32_t RH_RF22::getLastPreambleTime()
{
return _lastPreambleTime;
}
void RH_RF22::setGpioReversed(bool gpioReversed)
{
// Ensure the antenna can be switched automatically according to transmit and receive
// This assumes GPIO0(out) is connected to TX_ANT(in) to enable tx antenna during transmit
// This assumes GPIO1(out) is connected to RX_ANT(in) to enable rx antenna during receive
if (gpioReversed)
{
// Reversed for HAB-RFM22B-BOA HAB-RFM22B-BO, also Si4432 sold by Dorji.com via Tindie.com.
spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x15) ; // RX state
spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x12) ; // TX state
}
else
{
spiWrite(RH_RF22_REG_0B_GPIO_CONFIGURATION0, 0x12) ; // TX state
spiWrite(RH_RF22_REG_0C_GPIO_CONFIGURATION1, 0x15) ; // RX state
}
}