Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Re-instate Example 5.4 #123

Open
MHenderson opened this issue Feb 11, 2024 · 1 comment
Open

Re-instate Example 5.4 #123

MHenderson opened this issue Feb 11, 2024 · 1 comment
Milestone

Comments

@MHenderson
Copy link
Owner

I don't think smallmatrix is going to save us here.

@MHenderson MHenderson modified the milestones: v1.0.0, v2.0.0, v1.1.0 Feb 11, 2024
@MHenderson MHenderson changed the title Chapter 5: Fix overflowing equations in Example 5.4 Chapter 5: Re-instate Example 5.4 Feb 16, 2024
@MHenderson
Copy link
Owner Author

\begin{example}
Consider the following $\BRS(8)$.
\begin{equation}
  \begin{bmatrix}
    \infty 0 &    26    &    45    &            &    13    &            &          \\
             & \infty 1 &    30    &     56     &          &     24     &          \\
             &          & \infty 2 &     41     &    60    &            &    35    \\
      46     &          &          &  \infty 3  &    52    &     01     &          \\
             &    50    &          &            & \infty 4 &     63     &    12    \\
      23     &          &    61    &            &          &  \infty 5  &    04    \\
      15     &    34    &          &     02     &          &            & \infty 6 \\
  \end{bmatrix}
\end{equation}

\begin{equation}
  \begin{bmatrix}
    \infty 0 &          &          &     64     &          &     32     &    51    \\
      62     & \infty 1 &          &            &    05    &            &    43    \\
      54     &    03    & \infty 2 &            &          &     16     &          \\
             &    65    &    14    &  \infty 3  &          &            &    20    \\
      31     &          &    06    &     25     & \infty 4 &            &          \\
             &    42    &          &     10     &    36    &  \infty 5  &          \\
             &          &    53    &            &    21    &     40     & \infty 6 \\
  \end{bmatrix}
\end{equation}

These BRS satisfy all three properties required by Theorem~\ref{thm:schellenberg} (we shall see why later). 
Suppose we take the following two disjoint common transversals as $T_1$ (lighter grey shading) and $T_2$ (darker grey shading).
\begin{equation}
  R \odot S = \begin{bmatrix}
      00 & 26 & 45 & 64 & 13 & 32 & 51 \\
      62 & 11 & 30 & 56 & 05 & 24 & 43 \\
      54 & 03 & 22 & 41 & 60 & 16 & 35 \\
      46 & 65 & 14 & 33 & 42 & 01 & 20 \\
      31 & 50 & 06 & 25 & 44 & 63 & 12 \\
      23 & 42 & 61 & 10 & 36 & 55 & 04 \\
      15 & 34 & 53 & 02 & 21 & 40 & 66 \\
  \end{bmatrix}
\end{equation}

Next we obtain $A$ from the superposition of $\hat{R}$ and
$\hat{S'}$.
\begin{equation}
  A = \begin{bmatrix}
           & 26   & 45   & 6'4' & 13   & 3'2' & 5'1' \\
      6'2' &      & 30   & 56   & 0'5' & 24   & 4'3' \\
      5'4' & 0'3' &      & 41   & 60   & 1'6' & 35   \\
      46   & 6'5' & 1'4' &      & 42   & 01   & 2'0' \\
      3'1' & 50   & 0'6' & 2'5' &      & 63   & 12   \\
      23   & 4'2' & 61   & 1'0' & 3'6' &      & 04   \\
      15   & 34   & 5'3' & 02   & 2'1' & 4'0' &      \\
  \end{bmatrix}
\end{equation}

Then we construct $B$, and after swapping the order of certain pairs, obtain $D$.
\begin{equation}
  B = \begin{bmatrix}
      0'0 & 26' & 45' & 64' & 13' & 32' & 51'  \\
      62' & 11' & 30' & 56' & 05' & 24' & 43'  \\
      54' & 03' & 22' & 41' & 60' & 16' & 35'  \\
      46' & 65' & 14' & 33' & 52' & 01' & 20'  \\
      31' & 50' & 06' & 25' & 44' & 63' & 12'  \\
      23' & 42' & 61' & 10' & 36' & 55' & 04'  \\
      15' & 34' & 53' & 02' & 21' & 40' & 66'  \\
  \end{bmatrix}
\end{equation}

\begin{equation}
  D = \begin{bmatrix}
      0'0 & 6'2 & 5'4 & 64' & 3'1 & 32' & 51'  \\
      62' & 11' & 0'3 & 6'5 & 05' & 4'2 & 43'  \\
      54' & 03' & 22' & 1'4 & 0'6 & 16' & 5'3  \\
      6'4 & 65' & 14' & 33' & 2'5 & 1'0 & 20'  \\
      31' & 0'5 & 06' & 25' & 44' & 3'6 & 2'1  \\
      3'2 & 42' & 1'6 & 10' & 36' & 55' & 4'0  \\
      5'1 & 4'3 & 53' & 2'0 & 21' & 40' & 66'  \\
  \end{bmatrix}
\end{equation}

$C$ is obtained by arranging $A$ and $D$ thus.
\begin{equation}
  B = \left[\begin{array}{c|*{15}c}
 0  &  0   &   1  &   2  &  3  &  4   &   5  &   6  &  0' &  1' &  2' &  3' &  4' &  5' &  6' & l \\ \hline
 1  &      &  26  &  45  & 64' & 13   & 3'2' & 5'1' &     &     &     &     &     &     &     & \\
 2  & 6'2' &      &  30  & 56' & 0'5' & 24   & 4'3' &     &     &     &     &     &     &     & \\
 3  & 5'4' & 0'3' &      & 41' & 60   & 1'6' &  35  &     &     &     &     &     &     &     & \\
 4  &  46  & 6'5' & 1'4' &     & 52   & 01   & 2'0' &     &     &     &     &     &     &     & \\
 5  & 3'1' &  50  & 0'6' & 25' &      & 63   & 12   &     &     &     &     &     &     &     & \\
 6  &  23  & 4'2' &  61  & 10' & 3'6' &      & 04   &     &     &     &     &     &     &     & \\
 0' &  15  &  34  & 5'3' & 02' & 2'1' & 4'0' &      &     &     &     &     &     &     &     & \\
 1' &      &      &      &     &      &      &      & 0'0 & 6'2 & 5'4 & 64' & 3'1 & 32' & 51' & \\
 2' &      &      &      &     &      &      &      & 62' & 11' & 0'3 & 6'5 & 05' & 4'2 & 43' & \\
 3' &      &      &      &     &      &      &      & 54' & 03' & 22' & 1'4 & 0'6 & 16' & 5'3 & \\
 4' &      &      &      &     &      &      &      & 6'4 & 65' & 14' & 33' & 2'5 & 1'0 & 20' & \\
 5' &      &      &      &     &      &      &      & 31' & 0'5 & 06' & 25' & 44' & 3'6 & 2'1 & \\
 6' &      &      &      &     &      &      &      & 3'2 & 42' & 1'6 & 10' & 36' & 55' & 4'0 & \\
 7' &      &      &      &     &      &      &      & 5'1 & 4'3 & 53' & 2'0 & 21' & 40' & 66' & \\
 8' &      &      &      &     &      &      &      &     &     &     &     &     &     &     & \infty'\infty \\
  \end{array}\right]
\end{equation}

Finally, we construct $F$ according to the two presciptions in the final part of the construction.
Which involves first replacing some of the pairs in those cells of $C$ corresponding to $D$.

Consider
\begin{equation}
T'_1 = \{(2',6'),(3',0'),(4',1'),(5',2'),(6',3'),(0',4'),(1',5')\}
\end{equation}
In $R$, the cells $(2, 6), (3, 0), (4, 1), (5, 2), (6, 3), (0, 4)$ and $(1, 5)$ were all non-empty, so $C$ contains pairs of the form $(k', n)$ in all cells $(2', 6'), (3', 0'), \ldots$.
All of these are removed and replaced in the final column of the same row.
And, for each pair $(k', n)$, corresponding pairs of the form $(\infty ', k'), (\infty,n)$ are put in cells $(k, j'_m), (n, j'_m)$, respectively.

For example, $(5',3)$ appears in position $(2', 6')$ of $C$.
So in $F$, $(5', 3)$ appears in $(2', l)$ and the additional pairs $(\infty, 3)$ and $(\infty ', 5')$ appear in column $6'$, in rows 3 and 5 respectively.

All of which makes the final columns appear like so:
\begin{equation}
  \left[\begin{array}{c|*{8}c}
       &        0'      &       1'       &      2'       &      3'      &        4'       &       5'       &       6'       &         l  \\ \hline
    0  &                &   \infty ' 0'  &               &   \infty 0   &                 &                &                &            \\ 
    1  &                &                &  \infty ' 1'  &              &     \infty 1    &                &                &            \\
    2  &                &                &               &  \infty ' 2' &                 &    \infty 2    &                &            \\
    3  &                &                &               &              &   \infty ' 3 '  &                &    \infty 3    &            \\ 
    4  &    \infty  4   &                &               &              &                 &  \infty ' 4 '  &                &            \\
    5  &                &   \infty  5    &               &              &                 &                &  \infty ' 5 '  &            \\
    6  &   \infty ' 6 ' &                &   \infty 6    &              &                 &                &                &            \\
    0' &       00'      &       6'2      &      5'4      &      64'     &                 &      32'       &      51'        &       3'1 \\
    1' &       62'      &       11'      &      0'3      &      6'5     &       05'       &                &      43'        &       4'2 \\
    2' &       54'      &       03'      &      22'      &      1'4     &       0'6       &      16'       &                 &       5'3 \\
    3' &                &       65'      &      14'      &      33'     &       2'5       &      1'0       &      20'        &       6'4 \\
    4' &       31'      &                &      06'      &      25'     &       44'       &      3'6       &      2'1        &       0'5 \\
    5' &       3'2      &       42'      &               &      10'     &       36'       &      55'       &      4'0        &       1'6 \\
    6' &       5'1      &       4'3      &      53'      &              &       21'       &      40'       &      66'        &    2'0     \\
    l  &                &                &               &              &                 &                &                 & \infty ' \infty \\ 
  \end{array}\right]
\end{equation}

Now consider:
\begin{equation}
T'_2 = \{(4', 5'), (5', 6'), (6', 0'), (0', 1'), (1', 2'), (2', 3'), (3', 4')\}
\end{equation}

In each cell $(i'_m, j'_m)$ of $C$, where $(i'_m,j'_m) \in T'_2$, occurs a pair $(k', n)$.
We remove this and place it in cell $(l, j'_m)$, also putting pairs $(k', \infty), (\infty ', n)$ in cells $(i'_m, k), (i'_m, n)$.

For example, $(3', 6)$ appears in $(4', 5')$, so $(3', 6)$ goes in $(l, 5')$ and $(3', \infty), (\infty ', 6)$ go in $(4', 3), (4', 6)$ respectively.
\begin{equation}
  \left[\begin{array}{c|*{15}c}
        &      0       &      1       &      2       &      3       &      4       &      5       &      6       &  0'   &  1'   &  2'   &  3'   &  4'   &  5'   &  6'    &        l         \\ \hline
    0'  &              &              &  \infty ' 2  &              &              &              &  6' \infty   &  00'  &       &  5'4  &  64'  &       &  32'  &  51'   &       3'1        \\
    1'  &  0' \infty   &              &              &  \infty ' 3  &              &              &              &  62'  &  11'  &       &  6'5  &  05'  &       &  43'   &       4'2        \\
    2'  &              &  1' \infty   &              &              &  \infty ' 4  &              &              &  54'  &  03'  &  22'  &       &  0'6  &  16'  &        &       5'3        \\
    3'  &              &              &  2' \infty   &              &              &  \infty ' 5  &              &       &  65'  &  14'  &  33'  &       &  1'0  &  20'   &       6'4        \\
    4'  &              &              &              &  3' \infty   &              &              &  \infty ' 6  &  31'  &       &  06'  &  25'  &  44'  &       &  2'1   &       0'5        \\
    5'  &  \infty ' 0  &              &              &              &  4' \infty   &              &              &  3'2  &  42'  &       &  10'  &  36'  &  55'  &        &       1'6        \\
    6'  &              &  \infty ' 1  &              &              &              &  5' \infty   &              &       &  4'3  &  53'  &       &  21'  &  40'  &  66'   &       2'0        \\
    l   &              &              &              &              &              &              &              &  5'1  &  6'2  &  0'3  &  1'4  &  2'5  &  3'6  &  4'0   & \infty ' \infty  \\
  \end{array}\right]
\end{equation}

So the following array, the completed $F$, is a $\BRS(16)$:

\begin{equation}
  \left[\begin{array}{*{16}c}
               &       26      &      45      &    6'4'      &    13         &  3'2'      &    5'1'       &             & \infty ' 0'   &                & \infty 0      &               &               &               &    \\
       6'2'    &               &      30      &      56      &     0'5'      &     24     &      4'3'     &             &               &   \infty ' 1'  &               &   \infty 1    &               &               &    \\
       5'4'    &      0'3'     &              &      41      &      60       &    1'6'    &       35      &             &               &                &  \infty ' 2'  &               &   \infty 2    &               &    \\
        46     &      6'5'     &     1'4'     &              &      52       &     01     &      2'0'     &             &               &                &               &  \infty ' 3'  &               &   \infty 3    &    \\
       3'1'    &       50      &     0'6'     &     2'5'     &               &     63     &       12      &   \infty 4  &               &                &               &               &  \infty ' 4'  &               &    \\
        23     &      4'2'     &      61      &     1'0'     &     3'6'      &            &       04      &             &    \infty 5   &                &               &               &               &  \infty ' 5'  &    \\
        15     &       34      &     5'3'     &      02      &     2'1'      &    4'0'    &               &  \infty' 6' &               &    \infty 6    &               &               &               &               &    \\ 
               &               &  \infty ' 2  &              &               &            &   6' \infty   &     00'     &               &       5'4      &      64'      &               &      32'      &      51'      &        3'1  \\
    0' \infty  &               &              &  \infty ' 3  &               &            &               &     62'     &       11'     &                &      6'5      &      05'      &               &      43'      &        4'2  \\
               &   1' \infty   &              &              &  \infty ' 4   &            &               &     54'     &       03'     &       22'      &               &      0'6      &      16'      &               &        5'3  \\
               &               &  2' \infty   &              &               & \infty ' 5 &               &             &       65'     &       14'      &      33'      &               &      1'0      &      20'      &        6'4  \\
               &               &              &  3' \infty   &               &            &   \infty ' 6  &     31'     &               &       06'      &      25'      &      44'      &               &      2'1      &        0'5  \\
    \infty ' 0 &               &              &              &  4' \infty    &            &               &     3'2     &       42'     &                &      10'      &      36'      &      55'      &               &        1'6  \\
               &   \infty ' 1  &              &              &               & 5' \infty  &               &             &       4'3     &       53'      &               &      21'      &      40'      &      66'      &        2'0  \\
               &               &              &              &               &            &               &     5'1     &       6'2     &       0'3      &      1'4      &      2'5      &      3'6      &      4'0      &  \infty ' \infty \\ 
  \end{array}\right]
\end{equation}
\end{example}

@MHenderson MHenderson modified the milestones: v1.1.0, v1.2.0 May 20, 2024
@MHenderson MHenderson changed the title Chapter 5: Re-instate Example 5.4 Re-instate Example 5.4 May 20, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant