-
Notifications
You must be signed in to change notification settings - Fork 0
/
smallest_sum.rb
36 lines (27 loc) · 1.15 KB
/
smallest_sum.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
=begin
Given an array X of positive integers, its elements are to be transformed by running the
following operation on them as many times as required:
if X[i] > X[j] then X[i] = X[i] - X[j]
When no more transformations are possible, return its sum ("smallest possible sum").
For instance, the successive transformation of the elements of input X = [6, 9, 21] is detailed below:
X_1 = [6, 9, 12] # -> X_1[2] = X[2] - X[1] = 21 - 9
X_2 = [6, 9, 6] # -> X_2[2] = X_1[2] - X_1[0] = 12 - 6
X_3 = [6, 3, 6] # -> X_3[1] = X_2[1] - X_2[0] = 9 - 6
X_4 = [6, 3, 3] # -> X_4[2] = X_3[2] - X_3[1] = 6 - 3
X_5 = [3, 3, 3] # -> X_5[1] = X_4[0] - X_4[1] = 6 - 3
The returning output is the sum of the final transformation (here 9).
Example
solution([6, 9, 21]) #-> 9
Solution steps:
[6, 9, 12] #-> X[2] = 21 - 9
[6, 9, 6] #-> X[2] = 12 - 6
[6, 3, 6] #-> X[1] = 9 - 6
[6, 3, 3] #-> X[2] = 6 - 3
[3, 3, 3] #-> X[1] = 6 - 3
Additional notes:
There are performance tests consisted of very big numbers and arrays of size at least 30000. Please write an efficient algorithm to prevent timeout.
=end
def smallest_sum(integers)
divisor = integers.reduce(&:gcd)
divisor * sum
end