Skip to content
This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
/ accbpg Public archive

Accelerated Bregman Proximal Gradient Methods

License

Notifications You must be signed in to change notification settings

microsoft/accbpg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Accelerated Bregman Proximal Gradient Methods

A Python package of accelerated first-order algorithms for solving relatively-smooth convex optimization problems

minimize { f(x) + P(x) | x in C }

with a reference function h(x), where C is a closed convex set and

  • h(x) is convex and essentially smooth on C;
  • f(x) is convex and differentiable, and L-smooth relative to h(x), that is, f(x)-L*h(x) is convex;
  • P(x) is convex and closed (lower semi-continuous).

Implemented algorithms in HRX2018:

  • BPG(Bregman proximal gradient) method with line search option
  • ABPG (Accelerated BPG) method
  • ABPG-expo (ABPG with exponent adaption)
  • ABPG-gain (ABPG with gain adaption)
  • ABDA (Accelerated Bregman dual averaging) method

Additional algorithms for solving D-Optimal Experiment Design problems:

  • D_opt_FW (basic Frank-Wolfe method)
  • D_opt_FW_away (Frank-Wolfe method with away steps)

Install

Clone or fork from GitHub. Or install from PyPI:

pip install accbpg

Usage

Example: generate a random instance of D-optimal design problem and solve it using two different methods.

import accbpg

# generate a random instance of D-optimal design problem of size 80 by 200
f, h, L, x0 = accbpg.D_opt_design(80, 200)

# solve the problem instance using BPG with line search
x1, F1, G1, T1 = accbpg.BPG(f, h, L, x0, maxitrs=1000, verbskip=100)

# solve it again using ABPG with gamma=2
x2, F2, G2, T2 = accbpg.ABPG(f, h, L, x0, gamma=2, maxitrs=1000, verbskip=100)

# solve it again using adaptive variant of ABPG with gamma=2
x3, F3, G3, _, _, T3 = accbpg.ABPG_gain(f, h, L, x0, gamma=2, maxitrs=1000, verbskip=100)

D-optimal experiment design problems can be constructed from files (LIBSVM format) directly using

f, h, L, X0 = accbpg.D_opt_libsvm(filename)

All algorithms can work with customized functions f(x) and h(x), and an example is given in this Python file.

Additional examples

About

Accelerated Bregman Proximal Gradient Methods

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •