-
Notifications
You must be signed in to change notification settings - Fork 15
/
export_onnx.py
86 lines (72 loc) · 3.66 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import argparse
import sys
import time
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
import models
from models.experimental import attempt_load
from utils.activations import SiLU
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_device
from EfficientNMS import End2End
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./weights/yolov7.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--max-obj', type=int, default=100, help='topk')
parser.add_argument('--iou-thres', type=float, default=0.45, help='nms iou threshold')
parser.add_argument('--score-thres', type=float, default=0.25, help='nms score threshold')
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
parser.add_argument('--grid', action='store_true', default=True,help='export Detect() layer grid')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
model = attempt_load(opt.weights, map_location=device) # load FP32 model
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
model.eval()
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv) or isinstance(m, models.common.RepConv): # assign export-friendly activations
if isinstance(m.act, nn.SiLU):
m.act = SiLU()
#print(model)
model.model[-1].export = not opt.grid # set Detect() layer grid export
model = End2End(model, max_obj=opt.max_obj, iou_thres=opt.iou_thres, score_thres=opt.score_thres, max_wh=False, device=device)
y = model(img) # dry run
# ONNX export
try:
import onnx
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx') # filename
torch.onnx.export(model, img, f, verbose=False, opset_version=12,
training=torch.onnx.TrainingMode.EVAL,
do_constant_folding=True,
input_names=['images'],
output_names=['num_dets','det_boxes','det_scores','det_classes'],
dynamic_axes= None)
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
shapes = [opt.batch_size, 1, opt.batch_size, opt.max_obj, 4,
opt.batch_size, opt.max_obj, opt.batch_size, opt.max_obj]
for i in onnx_model.graph.output:
for j in i.type.tensor_type.shape.dim:
j.dim_param = str(shapes.pop(0))
onnx.save(onnx_model, f)
print('ONNX export success, saved as %s' % f)
except Exception as e:
print('ONNX export failure: %s' % e)
# Finish
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))