-
Notifications
You must be signed in to change notification settings - Fork 224
/
light.py
158 lines (124 loc) · 7.09 KB
/
light.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import numpy as np
import torch
import nvdiffrast.torch as dr
from . import util
from . import renderutils as ru
######################################################################################
# Utility functions
######################################################################################
class cubemap_mip(torch.autograd.Function):
@staticmethod
def forward(ctx, cubemap):
return util.avg_pool_nhwc(cubemap, (2,2))
@staticmethod
def backward(ctx, dout):
res = dout.shape[1] * 2
out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda")
for s in range(6):
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"),
torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"),
indexing='ij')
v = util.safe_normalize(util.cube_to_dir(s, gx, gy))
out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')
return out
######################################################################################
# Split-sum environment map light source with automatic mipmap generation
######################################################################################
class EnvironmentLight(torch.nn.Module):
LIGHT_MIN_RES = 16
MIN_ROUGHNESS = 0.08
MAX_ROUGHNESS = 0.5
def __init__(self, base):
super(EnvironmentLight, self).__init__()
self.mtx = None
self.base = torch.nn.Parameter(base.clone().detach(), requires_grad=True)
self.register_parameter('env_base', self.base)
def xfm(self, mtx):
self.mtx = mtx
def clone(self):
return EnvironmentLight(self.base.clone().detach())
def clamp_(self, min=None, max=None):
self.base.clamp_(min, max)
def get_mip(self, roughness):
return torch.where(roughness < self.MAX_ROUGHNESS
, (torch.clamp(roughness, self.MIN_ROUGHNESS, self.MAX_ROUGHNESS) - self.MIN_ROUGHNESS) / (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) * (len(self.specular) - 2)
, (torch.clamp(roughness, self.MAX_ROUGHNESS, 1.0) - self.MAX_ROUGHNESS) / (1.0 - self.MAX_ROUGHNESS) + len(self.specular) - 2)
def build_mips(self, cutoff=0.99):
self.specular = [self.base]
while self.specular[-1].shape[1] > self.LIGHT_MIN_RES:
self.specular += [cubemap_mip.apply(self.specular[-1])]
self.diffuse = ru.diffuse_cubemap(self.specular[-1])
for idx in range(len(self.specular) - 1):
roughness = (idx / (len(self.specular) - 2)) * (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) + self.MIN_ROUGHNESS
self.specular[idx] = ru.specular_cubemap(self.specular[idx], roughness, cutoff)
self.specular[-1] = ru.specular_cubemap(self.specular[-1], 1.0, cutoff)
def regularizer(self):
white = (self.base[..., 0:1] + self.base[..., 1:2] + self.base[..., 2:3]) / 3.0
return torch.mean(torch.abs(self.base - white))
def shade(self, gb_pos, gb_normal, kd, ks, view_pos, specular=True):
wo = util.safe_normalize(view_pos - gb_pos)
if specular:
roughness = ks[..., 1:2] # y component
metallic = ks[..., 2:3] # z component
spec_col = (1.0 - metallic)*0.04 + kd * metallic
diff_col = kd * (1.0 - metallic)
else:
diff_col = kd
reflvec = util.safe_normalize(util.reflect(wo, gb_normal))
nrmvec = gb_normal
if self.mtx is not None: # Rotate lookup
mtx = torch.as_tensor(self.mtx, dtype=torch.float32, device='cuda')
reflvec = ru.xfm_vectors(reflvec.view(reflvec.shape[0], reflvec.shape[1] * reflvec.shape[2], reflvec.shape[3]), mtx).view(*reflvec.shape)
nrmvec = ru.xfm_vectors(nrmvec.view(nrmvec.shape[0], nrmvec.shape[1] * nrmvec.shape[2], nrmvec.shape[3]), mtx).view(*nrmvec.shape)
# Diffuse lookup
diffuse = dr.texture(self.diffuse[None, ...], nrmvec.contiguous(), filter_mode='linear', boundary_mode='cube')
shaded_col = diffuse * diff_col
if specular:
# Lookup FG term from lookup texture
NdotV = torch.clamp(util.dot(wo, gb_normal), min=1e-4)
fg_uv = torch.cat((NdotV, roughness), dim=-1)
if not hasattr(self, '_FG_LUT'):
self._FG_LUT = torch.as_tensor(np.fromfile('data/irrmaps/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda')
fg_lookup = dr.texture(self._FG_LUT, fg_uv, filter_mode='linear', boundary_mode='clamp')
# Roughness adjusted specular env lookup
miplevel = self.get_mip(roughness)
spec = dr.texture(self.specular[0][None, ...], reflvec.contiguous(), mip=list(m[None, ...] for m in self.specular[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube')
# Compute aggregate lighting
reflectance = spec_col * fg_lookup[...,0:1] + fg_lookup[...,1:2]
shaded_col += spec * reflectance
return shaded_col * (1.0 - ks[..., 0:1]) # Modulate by hemisphere visibility
######################################################################################
# Load and store
######################################################################################
# Load from latlong .HDR file
def _load_env_hdr(fn, scale=1.0):
latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale
cubemap = util.latlong_to_cubemap(latlong_img, [512, 512])
l = EnvironmentLight(cubemap)
l.build_mips()
return l
def load_env(fn, scale=1.0):
if os.path.splitext(fn)[1].lower() == ".hdr":
return _load_env_hdr(fn, scale)
else:
assert False, "Unknown envlight extension %s" % os.path.splitext(fn)[1]
def save_env_map(fn, light):
assert isinstance(light, EnvironmentLight), "Can only save EnvironmentLight currently"
if isinstance(light, EnvironmentLight):
color = util.cubemap_to_latlong(light.base, [512, 1024])
util.save_image_raw(fn, color.detach().cpu().numpy())
######################################################################################
# Create trainable env map with random initialization
######################################################################################
def create_trainable_env_rnd(base_res, scale=0.5, bias=0.25):
base = torch.rand(6, base_res, base_res, 3, dtype=torch.float32, device='cuda') * scale + bias
return EnvironmentLight(base)