-
Notifications
You must be signed in to change notification settings - Fork 118
/
adversarial_autoencoder.py
executable file
·246 lines (213 loc) · 10.8 KB
/
adversarial_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import tensorflow as tf
import numpy as np
import datetime
import os
import matplotlib.pyplot as plt
from matplotlib import gridspec
from tensorflow.examples.tutorials.mnist import input_data
# Progressbar
# bar = progressbar.ProgressBar(widgets=['[', progressbar.Timer(), ']', progressbar.Bar(), '(', progressbar.ETA(), ')'])
# Get the MNIST data
mnist = input_data.read_data_sets('./Data', one_hot=True)
# Parameters
input_dim = 784
n_l1 = 1000
n_l2 = 1000
z_dim = 2
batch_size = 100
n_epochs = 1000
learning_rate = 0.001
beta1 = 0.9
results_path = './Results/Adversarial_Autoencoder'
# Placeholders for input data and the targets
x_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Input')
x_target = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Target')
real_distribution = tf.placeholder(dtype=tf.float32, shape=[batch_size, z_dim], name='Real_distribution')
decoder_input = tf.placeholder(dtype=tf.float32, shape=[1, z_dim], name='Decoder_input')
def form_results():
"""
Forms folders for each run to store the tensorboard files, saved models and the log files.
:return: three string pointing to tensorboard, saved models and log paths respectively.
"""
folder_name = "/{0}_{1}_{2}_{3}_{4}_{5}_Adversarial_Autoencoder". \
format(datetime.datetime.now(), z_dim, learning_rate, batch_size, n_epochs, beta1)
tensorboard_path = results_path + folder_name + '/Tensorboard'
saved_model_path = results_path + folder_name + '/Saved_models/'
log_path = results_path + folder_name + '/log'
if not os.path.exists(results_path + folder_name):
os.mkdir(results_path + folder_name)
os.mkdir(tensorboard_path)
os.mkdir(saved_model_path)
os.mkdir(log_path)
return tensorboard_path, saved_model_path, log_path
def generate_image_grid(sess, op):
"""
Generates a grid of images by passing a set of numbers to the decoder and getting its output.
:param sess: Tensorflow Session required to get the decoder output
:param op: Operation that needs to be called inorder to get the decoder output
:return: None, displays a matplotlib window with all the merged images.
"""
x_points = np.arange(-10, 10, 1.5).astype(np.float32)
y_points = np.arange(-10, 10, 1.5).astype(np.float32)
nx, ny = len(x_points), len(y_points)
plt.subplot()
gs = gridspec.GridSpec(nx, ny, hspace=0.05, wspace=0.05)
for i, g in enumerate(gs):
z = np.concatenate(([x_points[int(i / ny)]], [y_points[int(i % nx)]]))
z = np.reshape(z, (1, 2))
x = sess.run(op, feed_dict={decoder_input: z})
ax = plt.subplot(g)
img = np.array(x.tolist()).reshape(28, 28)
ax.imshow(img, cmap='gray')
ax.set_xticks([])
ax.set_yticks([])
ax.set_aspect('auto')
plt.show()
def dense(x, n1, n2, name):
"""
Used to create a dense layer.
:param x: input tensor to the dense layer
:param n1: no. of input neurons
:param n2: no. of output neurons
:param name: name of the entire dense layer.i.e, variable scope name.
:return: tensor with shape [batch_size, n2]
"""
with tf.variable_scope(name, reuse=None):
weights = tf.get_variable("weights", shape=[n1, n2],
initializer=tf.random_normal_initializer(mean=0., stddev=0.01))
bias = tf.get_variable("bias", shape=[n2], initializer=tf.constant_initializer(0.0))
out = tf.add(tf.matmul(x, weights), bias, name='matmul')
return out
# The autoencoder network
def encoder(x, reuse=False):
"""
Encode part of the autoencoder.
:param x: input to the autoencoder
:param reuse: True -> Reuse the encoder variables, False -> Create or search of variables before creating
:return: tensor which is the hidden latent variable of the autoencoder.
"""
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.name_scope('Encoder'):
e_dense_1 = tf.nn.relu(dense(x, input_dim, n_l1, 'e_dense_1'))
e_dense_2 = tf.nn.relu(dense(e_dense_1, n_l1, n_l2, 'e_dense_2'))
latent_variable = dense(e_dense_2, n_l2, z_dim, 'e_latent_variable')
return latent_variable
def decoder(x, reuse=False):
"""
Decoder part of the autoencoder.
:param x: input to the decoder
:param reuse: True -> Reuse the decoder variables, False -> Create or search of variables before creating
:return: tensor which should ideally be the input given to the encoder.
"""
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.name_scope('Decoder'):
d_dense_1 = tf.nn.relu(dense(x, z_dim, n_l2, 'd_dense_1'))
d_dense_2 = tf.nn.relu(dense(d_dense_1, n_l2, n_l1, 'd_dense_2'))
output = tf.nn.sigmoid(dense(d_dense_2, n_l1, input_dim, 'd_output'))
return output
def discriminator(x, reuse=False):
"""
Discriminator that is used to match the posterior distribution with a given prior distribution.
:param x: tensor of shape [batch_size, z_dim]
:param reuse: True -> Reuse the discriminator variables,
False -> Create or search of variables before creating
:return: tensor of shape [batch_size, 1]
"""
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.name_scope('Discriminator'):
dc_den1 = tf.nn.relu(dense(x, z_dim, n_l1, name='dc_den1'))
dc_den2 = tf.nn.relu(dense(dc_den1, n_l1, n_l2, name='dc_den2'))
output = dense(dc_den2, n_l2, 1, name='dc_output')
return output
def train(train_model=True):
"""
Used to train the autoencoder by passing in the necessary inputs.
:param train_model: True -> Train the model, False -> Load the latest trained model and show the image grid.
:return: does not return anything
"""
with tf.variable_scope(tf.get_variable_scope()):
encoder_output = encoder(x_input)
decoder_output = decoder(encoder_output)
with tf.variable_scope(tf.get_variable_scope()):
d_real = discriminator(real_distribution)
d_fake = discriminator(encoder_output, reuse=True)
with tf.variable_scope(tf.get_variable_scope()):
decoder_image = decoder(decoder_input, reuse=True)
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
# Discrimminator Loss
dc_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_real), logits=d_real))
dc_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake))
dc_loss = dc_loss_fake + dc_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake))
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
# Optimizers
autoencoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(autoencoder_loss)
discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(dc_loss, var_list=dc_var)
generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(generator_loss, var_list=en_var)
init = tf.global_variables_initializer()
# Reshape immages to display them
input_images = tf.reshape(x_input, [-1, 28, 28, 1])
generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1])
# Tensorboard visualization
tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss)
tf.summary.scalar(name='Discriminator Loss', tensor=dc_loss)
tf.summary.scalar(name='Generator Loss', tensor=generator_loss)
tf.summary.histogram(name='Encoder Distribution', values=encoder_output)
tf.summary.histogram(name='Real Distribution', values=real_distribution)
tf.summary.image(name='Input Images', tensor=input_images, max_outputs=10)
tf.summary.image(name='Generated Images', tensor=generated_images, max_outputs=10)
summary_op = tf.summary.merge_all()
# Saving the model
saver = tf.train.Saver()
step = 0
with tf.Session() as sess:
if train_model:
tensorboard_path, saved_model_path, log_path = form_results()
sess.run(init)
writer = tf.summary.FileWriter(logdir=tensorboard_path, graph=sess.graph)
for i in range(n_epochs):
n_batches = int(mnist.train.num_examples / batch_size)
print("------------------Epoch {}/{}------------------".format(i, n_epochs))
for b in range(1, n_batches + 1):
z_real_dist = np.random.randn(batch_size, z_dim) * 5.
batch_x, _ = mnist.train.next_batch(batch_size)
sess.run(autoencoder_optimizer, feed_dict={x_input: batch_x, x_target: batch_x})
sess.run(discriminator_optimizer,
feed_dict={x_input: batch_x, x_target: batch_x, real_distribution: z_real_dist})
sess.run(generator_optimizer, feed_dict={x_input: batch_x, x_target: batch_x})
if b % 50 == 0:
a_loss, d_loss, g_loss, summary = sess.run(
[autoencoder_loss, dc_loss, generator_loss, summary_op],
feed_dict={x_input: batch_x, x_target: batch_x,
real_distribution: z_real_dist})
writer.add_summary(summary, global_step=step)
print("Epoch: {}, iteration: {}".format(i, b))
print("Autoencoder Loss: {}".format(a_loss))
print("Discriminator Loss: {}".format(d_loss))
print("Generator Loss: {}".format(g_loss))
with open(log_path + '/log.txt', 'a') as log:
log.write("Epoch: {}, iteration: {}\n".format(i, b))
log.write("Autoencoder Loss: {}\n".format(a_loss))
log.write("Discriminator Loss: {}\n".format(d_loss))
log.write("Generator Loss: {}\n".format(g_loss))
step += 1
saver.save(sess, save_path=saved_model_path, global_step=step)
else:
# Get the latest results folder
all_results = os.listdir(results_path)
all_results.sort()
saver.restore(sess, save_path=tf.train.latest_checkpoint(results_path + '/' + all_results[-1] + '/Saved_models/'))
generate_image_grid(sess, op=decoder_image)
if __name__ == '__main__':
train(train_model=True)