ggblas is a library aimed to provide a simple and ergonomic access to the matrixmuliplication implemented in ggml
This library adds on top a threadpool with the physical number of cores each thread being pinned to their respective counterpart.
use ggblas::batched_sgemm;
let a = vec![1., 2., 3., 4.];
let b = vec![1., 2., 3., 4.];
let mut c = vec![0., 0., 0., 0.];
// Simple (2, 2) x (2, 2)
batched_sgemm(&a, &b, &mut c, 2, 2, 2);
assert_eq!(c, &[7., 10., 15., 22.]);
// Different shape (1, 4), (4, 1)
let mut c = vec![0.];
batched_sgemm(&a, &b, &mut c, 1, 1, 4);
assert_eq!(c, &[30.]);
// batched (2, 2, 1), (2, 1, 2)
// batching is done implicitly
let mut c = vec![0., 0., 0., 0., 0., 0., 0., 0.];
batched_sgemm(&a, &b, &mut c, 2, 2, 1);
assert_eq!(c, &[1.0, 2.0, 2.0, 4.0, 9.0, 12.0, 12.0, 16.0]);
Current performance can be see here
i5-9300 (avx2)
test bench_ggblas_n ... bench: 469,739 ns/iter (+/- 3,111)
test bench_ggblas_t ... bench: 317,049 ns/iter (+/- 5,450)
test bench_mkl_n ... bench: 140,561 ns/iter (+/- 1,095)
test bench_mkl_t ... bench: 185,928 ns/iter (+/- 2,781)
# (cblas)
test bench_blas_n ... bench: 5,955,545 ns/iter (+/- 87,172)
test bench_blas_t ... bench: 10,153,008 ns/iter (+/- 528,645)
# (matrixmultiply+threading)
test bench_matrixmultiply_n ... bench: 869,372 ns/iter (+/- 205,883)
test bench_matrixmultiply_t ... bench: 841,705 ns/iter (+/- 12,706)
test bench_ggml_n ... bench: 640,552 ns/iter (+/- 21,558)
test bench_ggml_t ... bench: 270,919 ns/iter (+/- 10,761)
test bench_matrixmultiply_n ... bench: 944,152 ns/iter (+/- 38,737)
test bench_matrixmultiply_t ... bench: 809,709 ns/iter (+/- 13,350)
test bench_blas_n ... bench: 97,389 ns/iter (+/- 701)
test bench_blas_t ... bench: 628,720 ns/iter (+/- 87,855)
License: Apache-2.0