Neo is a package for representing electrophysiology data in Python, together with support for reading a wide range of neurophysiology file formats
Python
Latest commit 87b961d Sep 13, 2016 @apdavison apdavison Release 0.5.0alpha1

README.rst

Neo

Neo is a Python package for working with electrophysiology data in Python, together with support for reading a wide range of neurophysiology file formats, including Spike2, NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon, Tdt, and support for writing to a subset of these formats plus non-proprietary formats including HDF5.

The goal of Neo is to improve interoperability between Python tools for analyzing, visualizing and generating electrophysiology data by providing a common, shared object model. In order to be as lightweight a dependency as possible, Neo is deliberately limited to represention of data, with no functions for data analysis or visualization.

Neo is used by a number of other software tools, including OpenElectrophy and SpykeViewer (data analysis and visualization), Elephant (data analysis), the G-node suite (databasing) and PyNN (simulations).

Neo implements a hierarchical data model well adapted to intracellular and extracellular electrophysiology and EEG data with support for multi-electrodes (for example tetrodes). Neo's data objects build on the quantities package, which in turn builds on NumPy by adding support for physical dimensions. Thus Neo objects behave just like normal NumPy arrays, but with additional metadata, checks for dimensional consistency and automatic unit conversion.

A project with similar aims but for neuroimaging file formats is NiBabel.

Code status

Unit Test Status Unit Test Coverage Requirements Status

More information

For installation instructions, see doc/source/install.rst

copyright:Copyright 2010-2016 by the Neo team, see doc/source/authors.rst.
license:3-Clause Revised BSD License, see LICENSE.txt for details.