-
Notifications
You must be signed in to change notification settings - Fork 29
/
nfov.py
114 lines (90 loc) · 4.21 KB
/
nfov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright 2017 Nitish Mutha (nitishmutha.com)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import pi
import numpy as np
class NFOV():
def __init__(self, height=400, width=800):
self.FOV = [0.45, 0.45]
self.PI = pi
self.PI_2 = pi * 0.5
self.PI2 = pi * 2.0
self.height = height
self.width = width
self.screen_points = self._get_screen_img()
def _get_coord_rad(self, isCenterPt, center_point=None):
return (center_point * 2 - 1) * np.array([self.PI, self.PI_2]) \
if isCenterPt \
else \
(self.screen_points * 2 - 1) * np.array([self.PI, self.PI_2]) * (
np.ones(self.screen_points.shape) * self.FOV)
def _get_screen_img(self):
xx, yy = np.meshgrid(np.linspace(0, 1, self.width), np.linspace(0, 1, self.height))
return np.array([xx.ravel(), yy.ravel()]).T
def _calcSphericaltoGnomonic(self, convertedScreenCoord):
x = convertedScreenCoord.T[0]
y = convertedScreenCoord.T[1]
rou = np.sqrt(x ** 2 + y ** 2)
c = np.arctan(rou)
sin_c = np.sin(c)
cos_c = np.cos(c)
lat = np.arcsin(cos_c * np.sin(self.cp[1]) + (y * sin_c * np.cos(self.cp[1])) / rou)
lon = self.cp[0] + np.arctan2(x * sin_c, rou * np.cos(self.cp[1]) * cos_c - y * np.sin(self.cp[1]) * sin_c)
lat = (lat / self.PI_2 + 1.) * 0.5
lon = (lon / self.PI + 1.) * 0.5
return np.array([lon, lat]).T
def _bilinear_interpolation(self, screen_coord):
uf = np.mod(screen_coord.T[0],1) * self.frame_width # long - width
vf = np.mod(screen_coord.T[1],1) * self.frame_height # lat - height
x0 = np.floor(uf).astype(int) # coord of pixel to bottom left
y0 = np.floor(vf).astype(int)
x2 = np.add(x0, np.ones(uf.shape).astype(int)) # coords of pixel to top right
y2 = np.add(y0, np.ones(vf.shape).astype(int))
base_y0 = np.multiply(y0, self.frame_width)
base_y2 = np.multiply(y2, self.frame_width)
A_idx = np.add(base_y0, x0)
B_idx = np.add(base_y2, x0)
C_idx = np.add(base_y0, x2)
D_idx = np.add(base_y2, x2)
flat_img = np.reshape(self.frame, [-1, self.frame_channel])
A = np.take(flat_img, A_idx, axis=0)
B = np.take(flat_img, B_idx, axis=0)
C = np.take(flat_img, C_idx, axis=0)
D = np.take(flat_img, D_idx, axis=0)
wa = np.multiply(x2 - uf, y2 - vf)
wb = np.multiply(x2 - uf, vf - y0)
wc = np.multiply(uf - x0, y2 - vf)
wd = np.multiply(uf - x0, vf - y0)
# interpolate
AA = np.multiply(A, np.array([wa, wa, wa]).T)
BB = np.multiply(B, np.array([wb, wb, wb]).T)
CC = np.multiply(C, np.array([wc, wc, wc]).T)
DD = np.multiply(D, np.array([wd, wd, wd]).T)
nfov = np.reshape(np.round(AA + BB + CC + DD).astype(np.uint8), [self.height, self.width, 3])
import matplotlib.pyplot as plt
plt.imshow(nfov)
plt.show()
return nfov
def toNFOV(self, frame, center_point):
self.frame = frame
self.frame_height = frame.shape[0]
self.frame_width = frame.shape[1]
self.frame_channel = frame.shape[2]
self.cp = self._get_coord_rad(center_point=center_point, isCenterPt=True)
convertedScreenCoord = self._get_coord_rad(isCenterPt=False)
spericalCoord = self._calcSphericaltoGnomonic(convertedScreenCoord)
return self._bilinear_interpolation(spericalCoord)
# test the class
if __name__ == '__main__':
import imageio as im
img = im.imread('images/360.jpg')
nfov = NFOV()
center_point = np.array([0.5, .5]) # camera center point (valid range [0,1])
nfov.toNFOV(img, center_point)