-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
434 lines (391 loc) · 24.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import datetime
import os
import time
import copy
import json
import tempfile
import numpy as np
from os.path import join as pjoin
from distutils.dir_util import copy_tree
from agent import Agent
import generic
import evaluate
import reinforcement_learning_dataset
from generic import HistoryScoreCache, EpisodicCountingMemory
def train():
time_1 = datetime.datetime.now()
config = generic.load_config()
agent = Agent(config)
output_dir = "./results/"
data_dir = "."
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# make game environments
requested_infos = agent.select_additional_infos()
games_dir = "../"
# training game env
env, _ = reinforcement_learning_dataset.get_training_game_env(games_dir + config['rl']['data_path'],
config['rl']['difficulty_level'],
config['rl']['training_size'],
requested_infos,
agent.max_nb_steps_per_episode,
agent.batch_size)
if agent.run_eval:
# training game env
eval_env, num_eval_game = reinforcement_learning_dataset.get_evaluation_game_env(games_dir + config['rl']['data_path'],
config['rl']['difficulty_level'],
requested_infos,
agent.eval_max_nb_steps_per_episode,
agent.eval_batch_size,
valid_or_test="valid")
else:
eval_env, num_eval_game = None, None
# visdom
if config["general"]["visdom"]:
import visdom
viz = visdom.Visdom()
reward_win, step_win = None, None
dqn_loss_win = None
eval_game_points_win, eval_step_win = None, None
viz_game_rewards, viz_game_points, viz_game_points_normalized, viz_graph_rewards, viz_count_rewards, viz_step = [], [], [], [], [], []
viz_dqn_loss = []
viz_eval_game_points, viz_eval_game_points_normalized, viz_eval_step = [], [], []
step_in_total = 0
episode_no = 0
running_avg_game_points = HistoryScoreCache(capacity=500)
running_avg_game_points_normalized = HistoryScoreCache(capacity=500)
running_avg_graph_rewards = HistoryScoreCache(capacity=500)
running_avg_count_rewards = HistoryScoreCache(capacity=500)
running_avg_game_steps = HistoryScoreCache(capacity=500)
running_avg_dqn_loss = HistoryScoreCache(capacity=500)
running_avg_game_rewards = HistoryScoreCache(capacity=500)
json_file_name = agent.experiment_tag.replace(" ", "_")
best_train_performance_so_far, best_eval_performance_so_far = 0.0, 0.0
prev_performance = 0.0
if os.path.exists(data_dir + "/" + agent.load_graph_generation_model_from_tag + ".pt"):
agent.load_pretrained_graph_generation_model(data_dir + "/" + agent.load_graph_generation_model_from_tag + ".pt")
# load model from checkpoint
if agent.load_pretrained:
if os.path.exists(output_dir + "/" + agent.experiment_tag + "_model.pt"):
agent.load_pretrained_model(output_dir + "/" + agent.experiment_tag + "_model.pt", load_partial_graph=False)
agent.update_target_net()
elif os.path.exists(data_dir + "/" + agent.load_from_tag + ".pt"):
agent.load_pretrained_model(data_dir + "/" + agent.load_from_tag + ".pt")
agent.update_target_net()
i_have_seen_these_states = EpisodicCountingMemory() # episodic counting based memory
i_am_patient = 0
perfect_training = 0
while(True):
if episode_no > agent.max_episode:
break
print("-------------cur iter : {}-------------".format(episode_no))
np.random.seed(episode_no)
env.seed(episode_no)
obs, infos = env.reset()
# filter look and examine actions
#for commands_ in infos["admissible_commands"]:
#for cmd_ in [cmd for cmd in commands_ if cmd != "examine cookbook" and cmd.split()[0] in ["examine", "look"]]:
#commands_.remove(cmd_)
batch_size = len(obs)
agent.train()
agent.init()
game_name_list = [game.metadata["uuid"].split("-")[-1] for game in infos["game"]]
game_max_score_list = [game.max_score for game in infos["game"]]
i_have_seen_these_states.reset() # reset episodic counting based memory
prev_triplets, chosen_actions, prev_game_facts = [], [], []
prev_step_dones, prev_rewards = [], []
for _ in range(batch_size):
prev_triplets.append([])
chosen_actions.append("restart")
prev_game_facts.append(set())
prev_step_dones.append(0.0)
prev_rewards.append(0.0)
prev_h, prev_c = None, None
observation_strings, current_triplets, action_candidate_list, _, current_game_facts = agent.get_game_info_at_certain_step(obs, infos, prev_actions=chosen_actions, prev_facts=None)
observation_for_counting = copy.copy(observation_strings)
#observation_strings = [item + " <sep> " + a for item, a in zip(observation_strings, chosen_actions)]
i_have_seen_these_states.push(current_triplets) # update init triplets into memory
if agent.count_reward_lambda > 0:
agent.reset_binarized_counter(batch_size)
_ = agent.get_binarized_count(observation_for_counting)
# it requires to store sequences of transitions into memory with order,
# so we use a cache to keep what agents returns, and push them into memory
# altogether in the end of game.
transition_cache = []
still_running_mask = []
game_rewards, game_points, graph_rewards, count_rewards = [], [], [], []
print_actions = []
act_randomly = False if agent.noisy_net else episode_no < agent.learn_start_from_this_episode
for step_no in range(agent.max_nb_steps_per_episode):
if agent.noisy_net:
agent.reset_noise() # Draw a new set of noisy weights
new_chosen_actions, chosen_indices, prev_h, prev_c = agent.act(observation_strings, current_triplets, action_candidate_list, previous_h=prev_h, previous_c=prev_c, random=act_randomly)
replay_info = [observation_strings, action_candidate_list, chosen_indices, current_triplets, chosen_actions]
transition_cache.append(replay_info)
chosen_actions = new_chosen_actions
chosen_actions_before_parsing = [item[idx] for item, idx in zip(infos["admissible_commands"], chosen_indices)]
obs, scores, dones, infos = env.step(chosen_actions_before_parsing)
# filter look and examine actions
#for commands_ in infos["admissible_commands"]:
#for cmd_ in [cmd for cmd in commands_ if cmd != "examine cookbook" and cmd.split()[0] in ["examine", "look"]]:
#commands_.remove(cmd_)
prev_triplets = current_triplets
prev_game_facts = current_game_facts
observation_strings, current_triplets, action_candidate_list, _, current_game_facts = agent.get_game_info_at_certain_step(obs, infos, prev_actions=chosen_actions, prev_facts=prev_game_facts)
observation_for_counting = copy.copy(observation_strings)
#observation_strings = [item + " <sep> " + a for item, a in zip(observation_strings, chosen_actions)]
has_not_seen = i_have_seen_these_states.has_not_seen(current_triplets)
i_have_seen_these_states.push(current_triplets) # update init triplets into memory
if agent.noisy_net and step_in_total % agent.update_per_k_game_steps == 0:
agent.reset_noise() # Draw a new set of noisy weights
if episode_no >= agent.learn_start_from_this_episode:
if step_in_total % agent.update_per_k_game_steps == 0:
dqn_loss, _ = agent.update_model(episode_no)
if dqn_loss is not None:
running_avg_dqn_loss.push(dqn_loss)
else:
prior_loss = agent.update_prior_only(episode_no)
if step_no == agent.max_nb_steps_per_episode - 1:
# terminate the game because DQN requires one extra step
dones = [True for _ in dones]
step_in_total += 1
still_running = [1.0 - float(item) for item in prev_step_dones] # list of float
prev_step_dones = dones
step_rewards = [float(curr) - float(prev) for curr, prev in zip(scores, prev_rewards)] # list of float
game_points.append(copy.copy(step_rewards))
if agent.use_negative_reward:
step_rewards = [-1.0 if _lost else r for r, _lost in zip(step_rewards, infos["has_lost"])] # list of float
step_rewards = [5.0 if _won else r for r, _won in zip(step_rewards, infos["has_won"])] # list of float
prev_rewards = scores
if agent.fully_observable_graph:
step_graph_rewards = [0.0 for _ in range(batch_size)]
else:
step_graph_rewards = agent.get_graph_rewards(prev_triplets, current_triplets) # list of float
step_graph_rewards = [r * float(m) for r, m in zip (step_graph_rewards, has_not_seen)]
# counting bonus
if agent.count_reward_lambda > 0:
step_revisit_counting_rewards = agent.get_binarized_count(observation_for_counting, update=True)
step_revisit_counting_rewards = [r * agent.count_reward_lambda for r in step_revisit_counting_rewards]
else:
step_revisit_counting_rewards = [0.0 for _ in range(batch_size)]
still_running_mask.append(still_running)
game_rewards.append(step_rewards)
graph_rewards.append(step_graph_rewards)
count_rewards.append(step_revisit_counting_rewards)
print_actions.append(chosen_actions_before_parsing[0] if still_running[0] else "--")
# if all ended, break
if np.sum(still_running) == 0:
break
still_running_mask_np = np.array(still_running_mask)
game_rewards_np = np.array(game_rewards) * still_running_mask_np # step x batch
game_points_np = np.array(game_points) * still_running_mask_np # step x batch
graph_rewards_np = np.array(graph_rewards) * still_running_mask_np # step x batch
count_rewards_np = np.array(count_rewards) * still_running_mask_np # step x batch
if agent.graph_reward_lambda > 0.0:
graph_rewards_pt = generic.to_pt(graph_rewards_np, enable_cuda=agent.use_cuda, type='float') # step x batch
else:
graph_rewards_pt = generic.to_pt(np.zeros_like(graph_rewards_np), enable_cuda=agent.use_cuda, type='float') # step x batch
if agent.count_reward_lambda > 0.0:
count_rewards_pt = generic.to_pt(count_rewards_np, enable_cuda=agent.use_cuda, type='float') # step x batch
else:
count_rewards_pt = generic.to_pt(np.zeros_like(count_rewards_np), enable_cuda=agent.use_cuda, type='float') # step x batch
command_rewards_pt = generic.to_pt(game_rewards_np, enable_cuda=agent.use_cuda, type='float') # step x batch
# push experience into replay buffer (dqn)
avg_rewards_in_buffer = agent.dqn_memory.avg_rewards()
for b in range(game_rewards_np.shape[1]):
if still_running_mask_np.shape[0] == agent.max_nb_steps_per_episode and still_running_mask_np[-1][b] != 0:
# need to pad one transition
_need_pad = True
tmp_game_rewards = game_rewards_np[:, b].tolist() + [0.0]
else:
_need_pad = False
tmp_game_rewards = game_rewards_np[:, b]
if np.mean(tmp_game_rewards) < avg_rewards_in_buffer * agent.buffer_reward_threshold:
continue
for i in range(game_rewards_np.shape[0]):
observation_strings, action_candidate_list, chosen_indices, _triplets, prev_action_strings = transition_cache[i]
is_final = True
if still_running_mask_np[i][b] != 0:
is_final = False
agent.dqn_memory.add(observation_strings[b], prev_action_strings[b], action_candidate_list[b], chosen_indices[b], _triplets[b], command_rewards_pt[i][b], graph_rewards_pt[i][b], count_rewards_pt[i][b], is_final)
agent.prior_memory.add(observation_strings[b], prev_action_strings[b], action_candidate_list[b], chosen_indices[b], _triplets[b], command_rewards_pt[i][b], graph_rewards_pt[i][b], count_rewards_pt[i][b], is_final)
if still_running_mask_np[i][b] == 0:
break
if _need_pad:
observation_strings, action_candidate_list, chosen_indices, _triplets, prev_action_strings = transition_cache[-1]
agent.dqn_memory.add(observation_strings[b], prev_action_strings[b], action_candidate_list[b], chosen_indices[b], _triplets[b], command_rewards_pt[-1][b] * 0.0, graph_rewards_pt[-1][b] * 0.0, count_rewards_pt[-1][b] * 0.0, True)
agent.prior_memory.add(observation_strings[b], prev_action_strings[b], action_candidate_list[b], chosen_indices[b], _triplets[b], command_rewards_pt[-1][b] * 0.0, graph_rewards_pt[-1][b] * 0.0, count_rewards_pt[-1][b] * 0.0, True)
for b in range(batch_size):
running_avg_game_points.push(np.sum(game_points_np, 0)[b])
game_max_score_np = np.array(game_max_score_list, dtype="float32")
running_avg_game_points_normalized.push((np.sum(game_points_np, 0) / game_max_score_np)[b])
running_avg_game_steps.push(np.sum(still_running_mask_np, 0)[b])
running_avg_game_rewards.push(np.sum(game_rewards_np, 0)[b])
running_avg_graph_rewards.push(np.sum(graph_rewards_np, 0)[b])
running_avg_count_rewards.push(np.sum(count_rewards_np, 0)[b])
# finish game
agent.finish_of_episode(episode_no, batch_size)
episode_no += batch_size
if episode_no < agent.learn_start_from_this_episode:
continue
if agent.report_frequency == 0 or (episode_no % agent.report_frequency > (episode_no - batch_size) % agent.report_frequency):
continue
time_2 = datetime.datetime.now()
print("Episode: {:3d} | time spent: {:s} | dqn loss: {:2.3f} | game points: {:2.3f} | normalized game points: {:2.3f} | game rewards: {:2.3f} | graph rewards: {:2.3f} | count rewards: {:2.3f} | used steps: {:2.3f}".format(episode_no, str(time_2 - time_1).rsplit(".")[0], running_avg_dqn_loss.get_avg(), running_avg_game_points.get_avg(), running_avg_game_points_normalized.get_avg(), running_avg_game_rewards.get_avg(), running_avg_graph_rewards.get_avg(), running_avg_count_rewards.get_avg(), running_avg_game_steps.get_avg()))
print(game_name_list[0] + ": " + " | ".join(print_actions))
# evaluate
curr_train_performance = running_avg_game_points_normalized.get_avg()
eval_game_points, eval_game_points_normalized, eval_game_step = 0.0, 0.0, 0.0
if agent.run_eval:
eval_game_points, eval_game_points_normalized, eval_game_step, _, detailed_scores = evaluate.evaluate(eval_env, agent, num_eval_game)
curr_eval_performance = eval_game_points_normalized
curr_performance = curr_eval_performance
if curr_eval_performance > best_eval_performance_so_far:
best_eval_performance_so_far = curr_eval_performance
agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_model.pt")
elif curr_eval_performance == best_eval_performance_so_far:
if curr_eval_performance > 0.0:
agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_model.pt")
else:
if curr_train_performance >= best_train_performance_so_far:
agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_model.pt")
else:
curr_eval_performance = 0.0
detailed_scores = ""
curr_performance = curr_train_performance
if curr_train_performance >= best_train_performance_so_far:
agent.save_model_to_path(output_dir + "/" + agent.experiment_tag + "_model.pt")
# update best train performance
if curr_train_performance >= best_train_performance_so_far:
best_train_performance_so_far = curr_train_performance
if prev_performance <= curr_performance:
i_am_patient = 0
else:
i_am_patient += 1
prev_performance = curr_performance
# if patient >= patience, resume from checkpoint
if agent.patience > 0 and i_am_patient >= agent.patience:
if os.path.exists(output_dir + "/" + agent.experiment_tag + "_model.pt"):
print('reload from a good checkpoint...')
agent.load_pretrained_model(output_dir + "/" + agent.experiment_tag + "_model.pt", load_partial_graph=False)
agent.update_target_net()
i_am_patient = 0
if running_avg_game_points_normalized.get_avg() >= 0.95:
perfect_training += 1
else:
perfect_training = 0
# plot using visdom
if config["general"]["visdom"]:
viz_game_rewards.append(running_avg_game_rewards.get_avg())
viz_game_points.append(running_avg_game_points.get_avg())
viz_game_points_normalized.append(running_avg_game_points_normalized.get_avg())
viz_graph_rewards.append(running_avg_graph_rewards.get_avg())
viz_count_rewards.append(running_avg_count_rewards.get_avg())
viz_step.append(running_avg_game_steps.get_avg())
viz_dqn_loss.append(running_avg_dqn_loss.get_avg())
viz_eval_game_points.append(eval_game_points)
viz_eval_game_points_normalized.append(eval_game_points_normalized)
viz_eval_step.append(eval_game_step)
viz_x = np.arange(len(viz_game_rewards)).tolist()
if reward_win is None:
reward_win = viz.line(X=viz_x, Y=viz_game_rewards,
opts=dict(title=agent.experiment_tag + "_game_rewards"),
name="game_rewards")
viz.line(X=viz_x, Y=viz_graph_rewards,
opts=dict(title=agent.experiment_tag + "_graph_rewards"),
win=reward_win, update='append', name="graph_rewards")
viz.line(X=viz_x, Y=viz_count_rewards,
opts=dict(title=agent.experiment_tag + "_count_rewards"),
win=reward_win, update='append', name="count_rewards")
viz.line(X=viz_x, Y=viz_game_points,
opts=dict(title=agent.experiment_tag + "_game_points"),
win=reward_win, update='append', name="game_points")
viz.line(X=viz_x, Y=viz_game_points_normalized,
opts=dict(title=agent.experiment_tag + "_game_points_normalized"),
win=reward_win, update='append', name="game_points_normalized")
else:
viz.line(X=[len(viz_game_rewards) - 1], Y=[viz_game_rewards[-1]],
opts=dict(title=agent.experiment_tag + "_game_rewards"),
win=reward_win,
update='append', name="game_rewards")
viz.line(X=[len(viz_graph_rewards) - 1], Y=[viz_graph_rewards[-1]],
opts=dict(title=agent.experiment_tag + "_graph_rewards"),
win=reward_win,
update='append', name="graph_rewards")
viz.line(X=[len(viz_count_rewards) - 1], Y=[viz_count_rewards[-1]],
opts=dict(title=agent.experiment_tag + "_count_rewards"),
win=reward_win,
update='append', name="count_rewards")
viz.line(X=[len(viz_game_points) - 1], Y=[viz_game_points[-1]],
opts=dict(title=agent.experiment_tag + "_game_points"),
win=reward_win,
update='append', name="game_points")
viz.line(X=[len(viz_game_points_normalized) - 1], Y=[viz_game_points_normalized[-1]],
opts=dict(title=agent.experiment_tag + "_game_points_normalized"),
win=reward_win,
update='append', name="game_points_normalized")
if step_win is None:
step_win = viz.line(X=viz_x, Y=viz_step,
opts=dict(title=agent.experiment_tag + "_step"),
name="step")
else:
viz.line(X=[len(viz_step) - 1], Y=[viz_step[-1]],
opts=dict(title=agent.experiment_tag + "_step"),
win=step_win,
update='append', name="step")
if dqn_loss_win is None:
dqn_loss_win = viz.line(X=viz_x, Y=viz_dqn_loss,
opts=dict(title=agent.experiment_tag + "_dqn_loss"),
name="dqn loss")
else:
viz.line(X=[len(viz_dqn_loss) - 1], Y=[viz_dqn_loss[-1]],
opts=dict(title=agent.experiment_tag + "_dqn_loss"),
win=dqn_loss_win,
update='append', name="dqn loss")
if eval_game_points_win is None:
eval_game_points_win = viz.line(X=viz_x, Y=viz_eval_game_points,
opts=dict(title=agent.experiment_tag + "_eval_game_points"),
name="eval game points")
viz.line(X=viz_x, Y=viz_eval_game_points_normalized,
opts=dict(title=agent.experiment_tag + "_eval_game_points_normalized"),
win=eval_game_points_win, update='append', name="eval_game_points_normalized")
else:
viz.line(X=[len(viz_eval_game_points) - 1], Y=[viz_eval_game_points[-1]],
opts=dict(title=agent.experiment_tag + "_eval_game_points"),
win=eval_game_points_win,
update='append', name="eval game_points")
viz.line(X=[len(viz_eval_game_points_normalized) - 1], Y=[viz_eval_game_points_normalized[-1]],
opts=dict(title=agent.experiment_tag + "_eval_game_points_normalized"),
win=eval_game_points_win,
update='append', name="eval_game_points_normalized")
if eval_step_win is None:
eval_step_win = viz.line(X=viz_x, Y=viz_eval_step,
opts=dict(title=agent.experiment_tag + "_eval_step"),
name="eval step")
else:
viz.line(X=[len(viz_eval_step) - 1], Y=[viz_eval_step[-1]],
opts=dict(title=agent.experiment_tag + "_eval_step"),
win=eval_step_win,
update='append', name="eval step")
# write accuracies down into file
_s = json.dumps({"time spent": str(time_2 - time_1).rsplit(".")[0],
"dqn loss": str(running_avg_dqn_loss.get_avg()),
"train game points": str(running_avg_game_points.get_avg()),
"train normalized game points": str(running_avg_game_points_normalized.get_avg()),
"train game rewards": str(running_avg_game_rewards.get_avg()),
"train graph rewards": str(running_avg_graph_rewards.get_avg()),
"train count rewards": str(running_avg_count_rewards.get_avg()),
"train steps": str(running_avg_game_steps.get_avg()),
"eval game points": str(eval_game_points),
"eval normalized game points": str(eval_game_points_normalized),
"eval steps": str(eval_game_step),
"detailed scores": detailed_scores})
with open(output_dir + "/" + json_file_name + '.json', 'a+') as outfile:
outfile.write(_s + '\n')
outfile.flush()
if curr_performance == 1.0 and curr_train_performance >= 0.95:
break
if perfect_training >= 3:
break
if __name__ == '__main__':
train()