-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
metrics.py
826 lines (664 loc) · 27.7 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import abc
import numpy as np
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.layer_helper import LayerHelper
from ..fluid.layers.nn import topk
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode
import paddle
__all__ = ['Metric', 'Accuracy', 'Precision', 'Recall', 'Auc', 'accuracy']
def _is_numpy_(var):
return isinstance(var, (np.ndarray, np.generic))
@six.add_metaclass(abc.ABCMeta)
class Metric(object):
r"""
Base class for metric, encapsulates metric logic and APIs
Usage:
.. code-block:: text
m = SomeMetric()
for prediction, label in ...:
m.update(prediction, label)
m.accumulate()
Advanced usage for :code:`compute`:
Metric calculation can be accelerated by calculating metric states
from model outputs and labels by build-in operators not by Python/NumPy
in :code:`compute`, metric states will be fetched as NumPy array and
call :code:`update` with states in NumPy format.
Metric calculated as follows (operations in Model and Metric are
indicated with curly brackets, while data nodes not):
.. code-block:: text
inputs & labels || ------------------
| ||
{model} ||
| ||
outputs & labels ||
| || tensor data
{Metric.compute} ||
| ||
metric states(tensor) ||
| ||
{fetch as numpy} || ------------------
| ||
metric states(numpy) || numpy data
| ||
{Metric.update} \/ ------------------
Examples:
For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
as inputs, we can calculate the correct prediction matrix between
:code:`pred` and :code:`label` in :code:`compute`.
For examples, prediction results contains 10 classes, while :code:`pred`
shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
and we only need to calculate accurary of top-1 and top-5, we could
calculate the correct prediction matrix of the top-5 scores of the
prediction of each sample like follows, while the correct prediction
matrix shape is [N, 5].
.. code-block:: text
def compute(pred, label):
# sort prediction and slice the top-5 scores
pred = paddle.argsort(pred, descending=True)[:, :5]
# calculate whether the predictions are correct
correct = pred == label
return paddle.cast(correct, dtype='float32')
With the :code:`compute`, we split some calculations to OPs (which
may run on GPU devices, will be faster), and only fetch 1 tensor with
shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
:code:`update` can be define as follows:
.. code-block:: text
def update(self, correct):
accs = []
for i, k in enumerate(self.topk):
num_corrects = correct[:, :k].sum()
num_samples = len(correct)
accs.append(float(num_corrects) / num_samples)
self.total[i] += num_corrects
self.count[i] += num_samples
return accs
"""
def __init__(self):
pass
@abc.abstractmethod
def reset(self):
"""
Reset states and result
"""
raise NotImplementedError("function 'reset' not implemented in {}.".
format(self.__class__.__name__))
@abc.abstractmethod
def update(self, *args):
"""
Update states for metric
Inputs of :code:`update` is the outputs of :code:`Metric.compute`,
if :code:`compute` is not defined, the inputs of :code:`update`
will be flatten arguments of **output** of mode and **label** from data:
:code:`update(output1, output2, ..., label1, label2,...)`
see :code:`Metric.compute`
"""
raise NotImplementedError("function 'update' not implemented in {}.".
format(self.__class__.__name__))
@abc.abstractmethod
def accumulate(self):
"""
Accumulates statistics, computes and returns the metric value
"""
raise NotImplementedError(
"function 'accumulate' not implemented in {}.".format(
self.__class__.__name__))
@abc.abstractmethod
def name(self):
"""
Returns metric name
"""
raise NotImplementedError("function 'name' not implemented in {}.".
format(self.__class__.__name__))
def compute(self, *args):
"""
This API is advanced usage to accelerate metric calculating, calulations
from outputs of model to the states which should be updated by Metric can
be defined here, where Paddle OPs is also supported. Outputs of this API
will be the inputs of "Metric.update".
If :code:`compute` is defined, it will be called with **outputs**
of model and **labels** from data as arguments, all outputs and labels
will be concatenated and flatten and each filed as a separate argument
as follows:
:code:`compute(output1, output2, ..., label1, label2,...)`
If :code:`compute` is not defined, default behaviour is to pass
input to output, so output format will be:
:code:`return output1, output2, ..., label1, label2,...`
see :code:`Metric.update`
"""
return args
class Accuracy(Metric):
"""
Encapsulates accuracy metric logic.
Args:
topk (int|tuple(int)): Number of top elements to look at
for computing accuracy. Default is (1,).
name (str, optional): String name of the metric instance. Default
is `acc`.
Example by standalone:
.. code-block:: python
import numpy as np
import paddle
x = paddle.to_tensor(np.array([
[0.1, 0.2, 0.3, 0.4],
[0.1, 0.4, 0.3, 0.2],
[0.1, 0.2, 0.4, 0.3],
[0.1, 0.2, 0.3, 0.4]]))
y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
m = paddle.metric.Accuracy()
correct = m.compute(x, y)
m.update(correct)
res = m.accumulate()
print(res) # 0.75
Example with Model API:
.. code-block:: python
import paddle
from paddle.static import InputSpec
import paddle.vision.transforms as T
from paddle.vision.datasets import MNIST
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = MNIST(mode='train', transform=transform)
model = paddle.Model(paddle.vision.LeNet(), input, label)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
model.fit(train_dataset, batch_size=64)
"""
def __init__(self, topk=(1, ), name=None, *args, **kwargs):
super(Accuracy, self).__init__(*args, **kwargs)
self.topk = topk
self.maxk = max(topk)
self._init_name(name)
self.reset()
def compute(self, pred, label, *args):
"""
Compute the top-k (maxinum value in `topk`) indices.
Args:
pred (Tensor): The predicted value is a Tensor with dtype
float32 or float64. Shape is [batch_size, d0, ..., dN].
label (Tensor): The ground truth value is Tensor with dtype
int64. Shape is [batch_size, d0, ..., 1], or
[batch_size, d0, ..., num_classes] in one hot representation.
Return:
Tensor: Correct mask, a tensor with shape [batch_size, topk].
"""
pred = paddle.argsort(pred, descending=True)
pred = paddle.slice(
pred, axes=[len(pred.shape) - 1], starts=[0], ends=[self.maxk])
if (len(label.shape) == 1) or \
(len(label.shape) == 2 and label.shape[-1] == 1):
# In static mode, the real label data shape may be different
# from shape defined by paddle.static.InputSpec in model
# building, reshape to the right shape.
label = paddle.reshape(label, (-1, 1))
elif label.shape[-1] != 1:
# one-hot label
label = paddle.argmax(label, axis=-1, keepdim=True)
correct = pred == label
return paddle.cast(correct, dtype='float32')
def update(self, correct, *args):
"""
Update the metrics states (correct count and total count), in order to
calculate cumulative accuracy of all instances. This function also
returns the accuracy of current step.
Args:
correct: Correct mask, a tensor with shape [batch_size, topk].
Return:
Tensor: the accuracy of current step.
"""
if isinstance(correct, paddle.Tensor):
correct = correct.numpy()
num_samples = np.prod(np.array(correct.shape[:-1]))
accs = []
for i, k in enumerate(self.topk):
num_corrects = correct[..., :k].sum()
accs.append(float(num_corrects) / num_samples)
self.total[i] += num_corrects
self.count[i] += num_samples
accs = accs[0] if len(self.topk) == 1 else accs
return accs
def reset(self):
"""
Resets all of the metric state.
"""
self.total = [0.] * len(self.topk)
self.count = [0] * len(self.topk)
def accumulate(self):
"""
Computes and returns the accumulated metric.
"""
res = []
for t, c in zip(self.total, self.count):
r = float(t) / c if c > 0 else 0.
res.append(r)
res = res[0] if len(self.topk) == 1 else res
return res
def _init_name(self, name):
name = name or 'acc'
if self.maxk != 1:
self._name = ['{}_top{}'.format(name, k) for k in self.topk]
else:
self._name = [name]
def name(self):
"""
Return name of metric instance.
"""
return self._name
class Precision(Metric):
"""
Precision (also called positive predictive value) is the fraction of
relevant instances among the retrieved instances. Refer to
https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
Noted that this class manages the precision score only for binary
classification task.
Args:
name (str, optional): String name of the metric instance.
Default is `precision`.
Example by standalone:
.. code-block:: python
import numpy as np
import paddle
x = np.array([0.1, 0.5, 0.6, 0.7])
y = np.array([0, 1, 1, 1])
m = paddle.metric.Precision()
m.update(x, y)
res = m.accumulate()
print(res) # 1.0
Example with Model API:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
class Data(paddle.io.Dataset):
def __init__(self):
super(Data, self).__init__()
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def __len__(self):
return self.n
model = paddle.Model(nn.Sequential(
nn.Linear(10, 1),
nn.Sigmoid()
))
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
loss=nn.BCELoss(),
metrics=paddle.metric.Precision())
data = Data()
model.fit(data, batch_size=16)
"""
def __init__(self, name='precision', *args, **kwargs):
super(Precision, self).__init__(*args, **kwargs)
self.tp = 0 # true positive
self.fp = 0 # false positive
self._name = name
def update(self, preds, labels):
"""
Update the states based on the current mini-batch prediction results.
Args:
preds (numpy.ndarray): The prediction result, usually the output
of two-class sigmoid function. It should be a vector (column
vector or row vector) with data type: 'float64' or 'float32'.
labels (numpy.ndarray): The ground truth (labels),
the shape should keep the same as preds.
The data type is 'int32' or 'int64'.
"""
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
elif not _is_numpy_(preds):
raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")
if isinstance(labels, paddle.Tensor):
labels = labels.numpy()
elif not _is_numpy_(labels):
raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")
sample_num = labels.shape[0]
preds = np.floor(preds + 0.5).astype("int32")
for i in range(sample_num):
pred = preds[i]
label = labels[i]
if pred == 1:
if pred == label:
self.tp += 1
else:
self.fp += 1
def reset(self):
"""
Resets all of the metric state.
"""
self.tp = 0
self.fp = 0
def accumulate(self):
"""
Calculate the final precision.
Returns:
A scaler float: results of the calculated precision.
"""
ap = self.tp + self.fp
return float(self.tp) / ap if ap != 0 else .0
def name(self):
"""
Returns metric name
"""
return self._name
class Recall(Metric):
"""
Recall (also known as sensitivity) is the fraction of
relevant instances that have been retrieved over the
total amount of relevant instances
Refer to:
https://en.wikipedia.org/wiki/Precision_and_recall
Noted that this class manages the recall score only for
binary classification task.
Args:
name (str, optional): String name of the metric instance.
Default is `recall`.
Example by standalone:
.. code-block:: python
import numpy as np
import paddle
x = np.array([0.1, 0.5, 0.6, 0.7])
y = np.array([1, 0, 1, 1])
m = paddle.metric.Recall()
m.update(x, y)
res = m.accumulate()
print(res) # 2.0 / 3.0
Example with Model API:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
class Data(paddle.io.Dataset):
def __init__(self):
super(Data, self).__init__()
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def __len__(self):
return self.n
model = paddle.Model(nn.Sequential(
nn.Linear(10, 1),
nn.Sigmoid()
))
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
model.prepare(
optim,
loss=nn.BCELoss(),
metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
data = Data()
model.fit(data, batch_size=16)
"""
def __init__(self, name='recall', *args, **kwargs):
super(Recall, self).__init__(*args, **kwargs)
self.tp = 0 # true positive
self.fn = 0 # false negative
self._name = name
def update(self, preds, labels):
"""
Update the states based on the current mini-batch prediction results.
Args:
preds(numpy.array): prediction results of current mini-batch,
the output of two-class sigmoid function.
Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
labels(numpy.array): ground truth (labels) of current mini-batch,
the shape should keep the same as preds.
Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
"""
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
elif not _is_numpy_(preds):
raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")
if isinstance(labels, paddle.Tensor):
labels = labels.numpy()
elif not _is_numpy_(labels):
raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")
sample_num = labels.shape[0]
preds = np.rint(preds).astype("int32")
for i in range(sample_num):
pred = preds[i]
label = labels[i]
if label == 1:
if pred == label:
self.tp += 1
else:
self.fn += 1
def accumulate(self):
"""
Calculate the final recall.
Returns:
A scaler float: results of the calculated Recall.
"""
recall = self.tp + self.fn
return float(self.tp) / recall if recall != 0 else .0
def reset(self):
"""
Resets all of the metric state.
"""
self.tp = 0
self.fn = 0
def name(self):
"""
Returns metric name
"""
return self._name
class Auc(Metric):
"""
The auc metric is for binary classification.
Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
Please notice that the auc metric is implemented with python, which may be a little bit slow.
The `auc` function creates four local variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives` that are used to
compute the AUC. To discretize the AUC curve, a linearly spaced set of
thresholds is used to compute pairs of recall and precision values. The area
under the ROC-curve is therefore computed using the height of the recall
values by the false positive rate, while the area under the PR-curve is the
computed using the height of the precision values by the recall.
Args:
curve (str): Specifies the mode of the curve to be computed,
'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
num_thresholds (int): The number of thresholds to use when
discretizing the roc curve. Default is 4095.
'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
name (str, optional): String name of the metric instance. Default
is `auc`.
"NOTE: only implement the ROC curve type via Python now."
Example by standalone:
.. code-block:: python
import numpy as np
import paddle
m = paddle.metric.Auc()
n = 8
class0_preds = np.random.random(size = (n, 1))
class1_preds = 1 - class0_preds
preds = np.concatenate((class0_preds, class1_preds), axis=1)
labels = np.random.randint(2, size = (n, 1))
m.update(preds=preds, labels=labels)
res = m.accumulate()
Example with Model API:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
class Data(paddle.io.Dataset):
def __init__(self):
super(Data, self).__init__()
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def __len__(self):
return self.n
model = paddle.Model(nn.Sequential(
nn.Linear(10, 2), nn.Softmax())
)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
def loss(x, y):
return nn.functional.nll_loss(paddle.log(x), y)
model.prepare(
optim,
loss=loss,
metrics=paddle.metric.Auc())
data = Data()
model.fit(data, batch_size=16)
"""
def __init__(self,
curve='ROC',
num_thresholds=4095,
name='auc',
*args,
**kwargs):
super(Auc, self).__init__(*args, **kwargs)
self._curve = curve
self._num_thresholds = num_thresholds
_num_pred_buckets = num_thresholds + 1
self._stat_pos = np.zeros(_num_pred_buckets)
self._stat_neg = np.zeros(_num_pred_buckets)
self._name = name
def update(self, preds, labels):
"""
Update the auc curve with the given predictions and labels.
Args:
preds (numpy.array): An numpy array in the shape of
(batch_size, 2), preds[i][j] denotes the probability of
classifying the instance i into the class j.
labels (numpy.array): an numpy array in the shape of
(batch_size, 1), labels[i] is either o or 1,
representing the label of the instance i.
"""
if isinstance(labels, paddle.Tensor):
labels = labels.numpy()
elif not _is_numpy_(labels):
raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
elif not _is_numpy_(preds):
raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")
for i, lbl in enumerate(labels):
value = preds[i, 1]
bin_idx = int(value * self._num_thresholds)
assert bin_idx <= self._num_thresholds
if lbl:
self._stat_pos[bin_idx] += 1.0
else:
self._stat_neg[bin_idx] += 1.0
@staticmethod
def trapezoid_area(x1, x2, y1, y2):
return abs(x1 - x2) * (y1 + y2) / 2.0
def accumulate(self):
"""
Return the area (a float score) under auc curve
Return:
float: the area under auc curve
"""
tot_pos = 0.0
tot_neg = 0.0
auc = 0.0
idx = self._num_thresholds
while idx >= 0:
tot_pos_prev = tot_pos
tot_neg_prev = tot_neg
tot_pos += self._stat_pos[idx]
tot_neg += self._stat_neg[idx]
auc += self.trapezoid_area(tot_neg, tot_neg_prev, tot_pos,
tot_pos_prev)
idx -= 1
return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0
def reset(self):
"""
Reset states and result
"""
_num_pred_buckets = self._num_thresholds + 1
self._stat_pos = np.zeros(_num_pred_buckets)
self._stat_neg = np.zeros(_num_pred_buckets)
def name(self):
"""
Returns metric name
"""
return self._name
def accuracy(input, label, k=1, correct=None, total=None, name=None):
"""
accuracy layer.
Refer to the https://en.wikipedia.org/wiki/Precision_and_recall
This function computes the accuracy using the input and label.
If the correct label occurs in top k predictions, then correct will increment by one.
Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
Args:
input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64.
The shape is ``[sample_number, class_dim]`` .
label(Tensor): The label of dataset. Tensor with type int32,int64. The shape is ``[sample_number, 1]`` .
k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32.
correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32.
total(Tensor, optional): The total entries count. A tensor with type int64 or int32.
name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
Tensor, the correct rate. A Tensor with type float32.
Examples:
.. code-block:: python
import paddle
predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
label = paddle.to_tensor([[2], [0]], dtype="int64")
result = paddle.metric.accuracy(input=predictions, label=label, k=1)
# [0.5]
"""
if in_dygraph_mode():
if correct is None:
correct = _varbase_creator(dtype="int32")
if total is None:
total = _varbase_creator(dtype="int32")
topk_out, topk_indices = topk(input, k=k)
_acc, _, _ = core.ops.accuracy(topk_out, topk_indices, label, correct,
total)
return _acc
helper = LayerHelper("accuracy", **locals())
check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
'accuracy')
topk_out, topk_indices = topk(input, k=k)
acc_out = helper.create_variable_for_type_inference(dtype="float32")
if correct is None:
correct = helper.create_variable_for_type_inference(dtype="int32")
if total is None:
total = helper.create_variable_for_type_inference(dtype="int32")
helper.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={
"Accuracy": [acc_out],
"Correct": [correct],
"Total": [total],
})
return acc_out