ROR is a pipelining framework for Python which makes it easier to define complex ML and data-processing stages.
pip install ror
To get started with creating your first pipeline, you can base it on this example which defines a simple GMM pipeline. Firstly, we import the relevant packages.
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.mixture import GaussianMixture
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from dataclasses import dataclass
from typing import Tuple
from ror.schemas import BaseSchema
from ror.schemas.fields import field_perishable, field_persistance
from ror.stages import IInitStage, ITerminalStage, IForwardStage
from ror.controlers import BaseController
Then we can define the schemas which will determine the structure of the data communicated between the different stages.
@dataclass
class InitStageInput(BaseSchema):
data: object = field_perishable()
@dataclass
class InitStageOutput(BaseSchema):
X_pca: object = field_persistance()
X_std: object = field_perishable()
model: object = field_persistance()
@dataclass
class InferenceStageOutput(BaseSchema):
X_pca: object = field_perishable()
model: object = field_perishable()
labels: object = field_persistance()
@dataclass
class VisStageOutput(BaseSchema):
labels: object = field_persistance()
We can then define the logical stages which will be utilizing these schemas as input and output between stages.
class VisStage(ITerminalStage[InferenceStageOutput, VisStageOutput]):
def compute(self) -> None:
# Visualize the clusters
plt.figure(figsize=(8, 6))
colors = ['r', 'g', 'b']
for i in range(3):
plt.scatter(
self.input.X_pca[self.input.labels == i, 0],
self.input.X_pca[self.input.labels == i, 1],
color=colors[i],
label=f'Cluster {i+1}'
)
plt.title('Gaussian Mixture Model Clustering')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend()
plt.show()
self._output = self.input.get_carry()
def get_output(self) -> VisStageOutput:
return VisStageOutput(**self._output)
class InferenceStage(IForwardStage[InitStageOutput, InferenceStageOutput, VisStage]):
def compute(self) -> None:
# Fit Guassian mixture to dataset
self.input.model.fit(self.input.X_std)
# Predict the labels
labels = self.input.model.predict(self.input.X_std)
self._output = {
"labels": labels,
**self.input.get_carry()
}
def get_output(self) -> Tuple[VisStage, InferenceStageOutput]:
return VisStage(), InferenceStageOutput(**self._output)
class InitStage(IInitStage[InitStageInput, InitStageOutput, InferenceStage]):
def compute(self) -> None:
# Load the dataset
X = self.input.data.data
# Standardize the features
scaler = StandardScaler()
X_std = scaler.fit_transform(X)
# Apply PCA to reduce dimensionality for visualization
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_std)
# Fit a Gaussian Mixture Model
gmm = GaussianMixture(n_components=3, random_state=42)
self._output = {
"X_pca": X_pca,
"X_std": X_std,
"model": gmm,
**self.input.get_carry()
}
def get_output(self) -> Tuple[InferenceStage, InitStageOutput]:
return InferenceStage(), InitStageOutput(**self._output)
Then we can define a simple controller which will be given an instance of the init stage and the input data to be passed through the pipeline.
iris = datasets.load_iris()
input_data = InitStageInput(data=iris)
controller = BaseController(init_data=input_data, init_stage=InitStage)
controller.discover() # Shows a table of the connected stages
output, run_id = controller.start()
And that's it! With this you can define logical processing stages for your ML inference pipelines whilst keeping a high level of seperation.