forked from AayushKrChaudhary/RITnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
77 lines (64 loc) · 2.34 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 2 11:37:59 2019
@author: aaa
"""
import torch
from dataset import IrisDataset
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
from dataset import transform
import os
from opt import parse_args
from models import model_dict
from tqdm import tqdm
from utils import get_predictions
#%%
if __name__ == '__main__':
args = parse_args()
if args.model not in model_dict:
print ("Model not found !!!")
print ("valid models are:",list(model_dict.keys()))
exit(1)
if args.useGPU:
device=torch.device("cuda")
else:
device=torch.device("cpu")
model = model_dict[args.model]
model = model.to(device)
filename = args.load
if not os.path.exists(filename):
print("model path not found !!!")
exit(1)
model.load_state_dict(torch.load(filename))
model = model.to(device)
model.eval()
test_set = IrisDataset(filepath = 'Semantic_Segmentation_Dataset/',\
split = 'test',transform = transform)
testloader = DataLoader(test_set, batch_size = args.bs,
shuffle=False, num_workers=2)
counter=0
os.makedirs('test/labels/',exist_ok=True)
os.makedirs('test/output/',exist_ok=True)
os.makedirs('test/mask/',exist_ok=True)
with torch.no_grad():
for i, batchdata in tqdm(enumerate(testloader),total=len(testloader)):
img,labels,index,x,y= batchdata
data = img.to(device)
output = model(data)
predict = get_predictions(output)
for j in range (len(index)):
np.save('test/labels/{}.npy'.format(index[j]),predict[j].cpu().numpy())
try:
plt.imsave('test/output/{}.jpg'.format(index[j]),255*labels[j].cpu().numpy())
except:
pass
pred_img = predict[j].cpu().numpy()/3.0
inp = img[j].squeeze() * 0.5 + 0.5
img_orig = np.clip(inp,0,1)
img_orig = np.array(img_orig)
combine = np.hstack([img_orig,pred_img])
plt.imsave('test/mask/{}.jpg'.format(index[j]),combine)
os.rename('test',args.save)