forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aggregation_push_down.go
477 lines (452 loc) · 18.8 KB
/
aggregation_push_down.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
// // Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package plan
import (
"fmt"
"github.com/pingcap/tidb/ast"
"github.com/pingcap/tidb/context"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/expression/aggregation"
"github.com/pingcap/tidb/model"
"github.com/pingcap/tidb/mysql"
"github.com/pingcap/tidb/types"
)
type aggregationOptimizer struct {
}
// isDecomposable checks if an aggregate function is decomposable. An aggregation function $F$ is decomposable
// if there exist aggregation functions F_1 and F_2 such that F(S_1 union all S_2) = F_2(F_1(S_1),F_1(S_2)),
// where S_1 and S_2 are two sets of values. We call S_1 and S_2 partial groups.
// It's easy to see that max, min, first row is decomposable, no matter whether it's distinct, but sum(distinct) and
// count(distinct) is not.
// Currently we don't support avg and concat.
func (a *aggregationOptimizer) isDecomposable(fun *aggregation.AggFuncDesc) bool {
switch fun.Name {
case ast.AggFuncAvg, ast.AggFuncGroupConcat:
// TODO: Support avg push down.
return false
case ast.AggFuncMax, ast.AggFuncMin, ast.AggFuncFirstRow:
return true
case ast.AggFuncSum, ast.AggFuncCount:
return !fun.HasDistinct
default:
return false
}
}
// getAggFuncChildIdx gets which children it belongs to, 0 stands for left, 1 stands for right, -1 stands for both.
func (a *aggregationOptimizer) getAggFuncChildIdx(aggFunc *aggregation.AggFuncDesc, schema *expression.Schema) int {
fromLeft, fromRight := false, false
var cols []*expression.Column
cols = expression.ExtractColumnsFromExpressions(cols, aggFunc.Args, nil)
for _, col := range cols {
if schema.Contains(col) {
fromLeft = true
} else {
fromRight = true
}
}
if fromLeft && fromRight {
return -1
} else if fromLeft {
return 0
}
return 1
}
// collectAggFuncs collects all aggregate functions and splits them into two parts: "leftAggFuncs" and "rightAggFuncs" whose
// arguments are all from left child or right child separately. If some aggregate functions have the arguments that have
// columns both from left and right children, the whole aggregation is forbidden to push down.
func (a *aggregationOptimizer) collectAggFuncs(agg *LogicalAggregation, join *LogicalJoin) (valid bool, leftAggFuncs, rightAggFuncs []*aggregation.AggFuncDesc) {
valid = true
leftChild := join.children[0]
for _, aggFunc := range agg.AggFuncs {
if !a.isDecomposable(aggFunc) {
return false, nil, nil
}
index := a.getAggFuncChildIdx(aggFunc, leftChild.Schema())
switch index {
case 0:
leftAggFuncs = append(leftAggFuncs, aggFunc)
case 1:
rightAggFuncs = append(rightAggFuncs, aggFunc)
default:
return false, nil, nil
}
}
return
}
// collectGbyCols collects all columns from gby-items and join-conditions and splits them into two parts: "leftGbyCols" and
// "rightGbyCols". e.g. For query "SELECT SUM(B.id) FROM A, B WHERE A.c1 = B.c1 AND A.c2 != B.c2 GROUP BY B.c3" , the optimized
// query should be "SELECT SUM(B.agg) FROM A, (SELECT SUM(id) as agg, c1, c2, c3 FROM B GROUP BY id, c1, c2, c3) as B
// WHERE A.c1 = B.c1 AND A.c2 != B.c2 GROUP BY B.c3". As you see, all the columns appearing in join-conditions should be
// treated as group by columns in join subquery.
func (a *aggregationOptimizer) collectGbyCols(agg *LogicalAggregation, join *LogicalJoin) (leftGbyCols, rightGbyCols []*expression.Column) {
leftChild := join.children[0]
ctx := agg.ctx
for _, gbyExpr := range agg.GroupByItems {
cols := expression.ExtractColumns(gbyExpr)
for _, col := range cols {
if leftChild.Schema().Contains(col) {
leftGbyCols = append(leftGbyCols, col)
} else {
rightGbyCols = append(rightGbyCols, col)
}
}
}
// extract equal conditions
for _, eqFunc := range join.EqualConditions {
leftGbyCols = a.addGbyCol(ctx, leftGbyCols, eqFunc.GetArgs()[0].(*expression.Column))
rightGbyCols = a.addGbyCol(ctx, rightGbyCols, eqFunc.GetArgs()[1].(*expression.Column))
}
for _, leftCond := range join.LeftConditions {
cols := expression.ExtractColumns(leftCond)
leftGbyCols = a.addGbyCol(ctx, leftGbyCols, cols...)
}
for _, rightCond := range join.RightConditions {
cols := expression.ExtractColumns(rightCond)
rightGbyCols = a.addGbyCol(ctx, rightGbyCols, cols...)
}
for _, otherCond := range join.OtherConditions {
cols := expression.ExtractColumns(otherCond)
for _, col := range cols {
if leftChild.Schema().Contains(col) {
leftGbyCols = a.addGbyCol(ctx, leftGbyCols, col)
} else {
rightGbyCols = a.addGbyCol(ctx, rightGbyCols, col)
}
}
}
return
}
func (a *aggregationOptimizer) splitAggFuncsAndGbyCols(agg *LogicalAggregation, join *LogicalJoin) (valid bool,
leftAggFuncs, rightAggFuncs []*aggregation.AggFuncDesc,
leftGbyCols, rightGbyCols []*expression.Column) {
valid, leftAggFuncs, rightAggFuncs = a.collectAggFuncs(agg, join)
if !valid {
return
}
leftGbyCols, rightGbyCols = a.collectGbyCols(agg, join)
return
}
// addGbyCol adds a column to gbyCols. If a group by column has existed, it will not be added repeatedly.
func (a *aggregationOptimizer) addGbyCol(ctx context.Context, gbyCols []*expression.Column, cols ...*expression.Column) []*expression.Column {
for _, c := range cols {
duplicate := false
for _, gbyCol := range gbyCols {
if c.Equal(gbyCol, ctx) {
duplicate = true
break
}
}
if !duplicate {
gbyCols = append(gbyCols, c)
}
}
return gbyCols
}
// checkValidJoin checks if this join should be pushed across.
func (a *aggregationOptimizer) checkValidJoin(join *LogicalJoin) bool {
return join.JoinType == InnerJoin || join.JoinType == LeftOuterJoin || join.JoinType == RightOuterJoin
}
// decompose splits an aggregate function to two parts: a final mode function and a partial mode function. Currently
// there are no differences between partial mode and complete mode, so we can confuse them.
func (a *aggregationOptimizer) decompose(aggFunc *aggregation.AggFuncDesc, schema *expression.Schema, id int) ([]*aggregation.AggFuncDesc, *expression.Schema) {
// Result is a slice because avg should be decomposed to sum and count. Currently we don't process this case.
result := []*aggregation.AggFuncDesc{aggFunc.Clone()}
for _, aggFunc := range result {
schema.Append(&expression.Column{
ColName: model.NewCIStr(fmt.Sprintf("join_agg_%d", schema.Len())), // useless but for debug
FromID: id,
Position: schema.Len(),
RetType: aggFunc.RetTp,
})
}
aggFunc.Args = expression.Column2Exprs(schema.Columns[schema.Len()-len(result):])
aggFunc.Mode = aggregation.FinalMode
return result, schema
}
func (a *aggregationOptimizer) allFirstRow(aggFuncs []*aggregation.AggFuncDesc) bool {
for _, fun := range aggFuncs {
if fun.Name != ast.AggFuncFirstRow {
return false
}
}
return true
}
// tryToPushDownAgg tries to push down an aggregate function into a join path. If all aggFuncs are first row, we won't
// process it temporarily. If not, We will add additional group by columns and first row functions. We make a new aggregation operator.
// If the pushed aggregation is grouped by unique key, it's no need to push it down.
func (a *aggregationOptimizer) tryToPushDownAgg(aggFuncs []*aggregation.AggFuncDesc, gbyCols []*expression.Column, join *LogicalJoin, childIdx int) LogicalPlan {
child := join.children[childIdx].(LogicalPlan)
if a.allFirstRow(aggFuncs) {
return child
}
// If the join is multiway-join, we forbid pushing down.
if _, ok := join.children[childIdx].(*LogicalJoin); ok {
return child
}
tmpSchema := expression.NewSchema(gbyCols...)
for _, key := range child.Schema().Keys {
if tmpSchema.ColumnsIndices(key) != nil {
return child
}
}
agg := a.makeNewAgg(join.ctx, aggFuncs, gbyCols)
agg.SetChildren(child)
// If agg has no group-by item, it will return a default value, which may cause some bugs.
// So here we add a group-by item forcely.
if len(agg.GroupByItems) == 0 {
agg.GroupByItems = []expression.Expression{&expression.Constant{
Value: types.NewDatum(0),
RetType: types.NewFieldType(mysql.TypeLong)}}
}
if (childIdx == 0 && join.JoinType == RightOuterJoin) || (childIdx == 1 && join.JoinType == LeftOuterJoin) {
var existsDefaultValues bool
join.DefaultValues, existsDefaultValues = a.getDefaultValues(agg)
if !existsDefaultValues {
return child
}
}
return agg
}
func (a *aggregationOptimizer) getDefaultValues(agg *LogicalAggregation) ([]types.Datum, bool) {
defaultValues := make([]types.Datum, 0, agg.Schema().Len())
for _, aggFunc := range agg.AggFuncs {
value, existsDefaultValue := aggFunc.CalculateDefaultValue(agg.ctx, agg.children[0].Schema())
if !existsDefaultValue {
return nil, false
}
defaultValues = append(defaultValues, value)
}
return defaultValues, true
}
func (a *aggregationOptimizer) checkAnyCountAndSum(aggFuncs []*aggregation.AggFuncDesc) bool {
for _, fun := range aggFuncs {
if fun.Name == ast.AggFuncSum || fun.Name == ast.AggFuncCount {
return true
}
}
return false
}
func (a *aggregationOptimizer) makeNewAgg(ctx context.Context, aggFuncs []*aggregation.AggFuncDesc, gbyCols []*expression.Column) *LogicalAggregation {
agg := LogicalAggregation{
GroupByItems: expression.Column2Exprs(gbyCols),
groupByCols: gbyCols,
}.init(ctx)
aggLen := len(aggFuncs) + len(gbyCols)
newAggFuncDescs := make([]*aggregation.AggFuncDesc, 0, aggLen)
schema := expression.NewSchema(make([]*expression.Column, 0, aggLen)...)
for _, aggFunc := range aggFuncs {
var newFuncs []*aggregation.AggFuncDesc
newFuncs, schema = a.decompose(aggFunc, schema, agg.ID())
newAggFuncDescs = append(newAggFuncDescs, newFuncs...)
}
for _, gbyCol := range gbyCols {
firstRow := aggregation.NewAggFuncDesc(agg.ctx, ast.AggFuncFirstRow, []expression.Expression{gbyCol.Clone()}, false)
newAggFuncDescs = append(newAggFuncDescs, firstRow)
schema.Append(gbyCol.Clone().(*expression.Column))
}
agg.AggFuncs = newAggFuncDescs
agg.SetSchema(schema)
// TODO: Add a Projection if any argument of aggregate funcs or group by items are scala functions.
// agg.buildProjectionIfNecessary()
return agg
}
// pushAggCrossUnion will try to push the agg down to the union. If the new aggregation's group-by columns doesn't contain unique key.
// We will return the new aggregation. Otherwise we will transform the aggregation to projection.
func (a *aggregationOptimizer) pushAggCrossUnion(agg *LogicalAggregation, unionSchema *expression.Schema, unionChild LogicalPlan) LogicalPlan {
ctx := agg.ctx
newAgg := LogicalAggregation{
AggFuncs: make([]*aggregation.AggFuncDesc, 0, len(agg.AggFuncs)),
GroupByItems: make([]expression.Expression, 0, len(agg.GroupByItems)),
}.init(ctx)
newAgg.SetSchema(agg.schema.Clone())
for _, aggFunc := range agg.AggFuncs {
newAggFunc := aggFunc.Clone()
newArgs := make([]expression.Expression, 0, len(newAggFunc.Args))
for _, arg := range newAggFunc.Args {
newArgs = append(newArgs, expression.ColumnSubstitute(arg, unionSchema, expression.Column2Exprs(unionChild.Schema().Columns)))
}
newAggFunc.Args = newArgs
newAgg.AggFuncs = append(newAgg.AggFuncs, newAggFunc)
}
for _, gbyExpr := range agg.GroupByItems {
newExpr := expression.ColumnSubstitute(gbyExpr, unionSchema, expression.Column2Exprs(unionChild.Schema().Columns))
newAgg.GroupByItems = append(newAgg.GroupByItems, newExpr)
}
newAgg.collectGroupByColumns()
tmpSchema := expression.NewSchema(newAgg.groupByCols...)
// e.g. Union distinct will add a aggregation like `select join_agg_0, join_agg_1, join_agg_2 from t group by a, b, c` above UnionAll.
// And the pushed agg will be something like `select a, b, c, a, b, c from t group by a, b, c`. So if we just return child as join does,
// this will cause error during executor phase.
for _, key := range unionChild.Schema().Keys {
if tmpSchema.ColumnsIndices(key) != nil {
proj := a.convertAggToProj(newAgg)
proj.SetChildren(unionChild)
return proj
}
}
newAgg.SetChildren(unionChild)
return newAgg
}
func (a *aggregationOptimizer) optimize(p LogicalPlan) (LogicalPlan, error) {
if !p.context().GetSessionVars().AllowAggPushDown {
return p, nil
}
a.aggPushDown(p)
return p, nil
}
// aggPushDown tries to push down aggregate functions to join paths.
func (a *aggregationOptimizer) aggPushDown(p LogicalPlan) LogicalPlan {
if agg, ok := p.(*LogicalAggregation); ok {
proj := a.tryToEliminateAggregation(agg)
if proj != nil {
p = proj
} else {
child := agg.children[0]
if join, ok1 := child.(*LogicalJoin); ok1 && a.checkValidJoin(join) {
if valid, leftAggFuncs, rightAggFuncs, leftGbyCols, rightGbyCols := a.splitAggFuncsAndGbyCols(agg, join); valid {
var lChild, rChild LogicalPlan
// If there exist count or sum functions in left join path, we can't push any
// aggregate function into right join path.
rightInvalid := a.checkAnyCountAndSum(leftAggFuncs)
leftInvalid := a.checkAnyCountAndSum(rightAggFuncs)
if rightInvalid {
rChild = join.children[1].(LogicalPlan)
} else {
rChild = a.tryToPushDownAgg(rightAggFuncs, rightGbyCols, join, 1)
}
if leftInvalid {
lChild = join.children[0].(LogicalPlan)
} else {
lChild = a.tryToPushDownAgg(leftAggFuncs, leftGbyCols, join, 0)
}
join.SetChildren(lChild, rChild)
join.SetSchema(expression.MergeSchema(lChild.Schema(), rChild.Schema()))
join.buildKeyInfo()
proj := a.tryToEliminateAggregation(agg)
if proj != nil {
p = proj
}
}
} else if proj, ok1 := child.(*LogicalProjection); ok1 {
// TODO: This optimization is not always reasonable. We have not supported pushing projection to kv layer yet,
// so we must do this optimization.
for i, gbyItem := range agg.GroupByItems {
agg.GroupByItems[i] = expression.ColumnSubstitute(gbyItem, proj.schema, proj.Exprs)
}
agg.collectGroupByColumns()
for _, aggFunc := range agg.AggFuncs {
newArgs := make([]expression.Expression, 0, len(aggFunc.Args))
for _, arg := range aggFunc.Args {
newArgs = append(newArgs, expression.ColumnSubstitute(arg, proj.schema, proj.Exprs))
}
aggFunc.Args = newArgs
}
projChild := proj.children[0]
agg.SetChildren(projChild)
} else if union, ok1 := child.(*LogicalUnionAll); ok1 {
var gbyCols []*expression.Column
gbyCols = expression.ExtractColumnsFromExpressions(gbyCols, agg.GroupByItems, nil)
pushedAgg := a.makeNewAgg(agg.ctx, agg.AggFuncs, gbyCols)
newChildren := make([]LogicalPlan, 0, len(union.children))
for _, child := range union.children {
newChild := a.pushAggCrossUnion(pushedAgg, union.Schema(), child.(LogicalPlan))
newChildren = append(newChildren, newChild)
}
union.SetChildren(newChildren...)
}
}
}
newChildren := make([]LogicalPlan, 0, len(p.Children()))
for _, child := range p.Children() {
newChild := a.aggPushDown(child.(LogicalPlan))
newChildren = append(newChildren, newChild)
}
p.SetChildren(newChildren...)
return p
}
// tryToEliminateAggregation will eliminate aggregation grouped by unique key.
// e.g. select min(b) from t group by a. If a is a unique key, then this sql is equal to `select b from t group by a`.
// For count(expr), sum(expr), avg(expr), count(distinct expr, [expr...]) we may need to rewrite the expr. Details are shown below.
// If we can eliminate agg successful, we return a projection. Else we return a nil pointer.
func (a *aggregationOptimizer) tryToEliminateAggregation(agg *LogicalAggregation) *LogicalProjection {
schemaByGroupby := expression.NewSchema(agg.groupByCols...)
coveredByUniqueKey := false
for _, key := range agg.children[0].Schema().Keys {
if schemaByGroupby.ColumnsIndices(key) != nil {
coveredByUniqueKey = true
break
}
}
if coveredByUniqueKey {
// GroupByCols has unique key, so this aggregation can be removed.
proj := a.convertAggToProj(agg)
proj.SetChildren(agg.children[0])
return proj
}
return nil
}
func (a *aggregationOptimizer) convertAggToProj(agg *LogicalAggregation) *LogicalProjection {
proj := LogicalProjection{
Exprs: make([]expression.Expression, 0, len(agg.AggFuncs)),
}.init(agg.ctx)
for _, fun := range agg.AggFuncs {
expr := a.rewriteExpr(agg.ctx, fun)
proj.Exprs = append(proj.Exprs, expr)
}
proj.SetSchema(agg.schema.Clone())
return proj
}
func (a *aggregationOptimizer) rewriteCount(ctx context.Context, exprs []expression.Expression) expression.Expression {
// If is count(expr), we will change it to if(isnull(expr), 0, 1).
// If is count(distinct x, y, z) we will change it to if(isnull(x) or isnull(y) or isnull(z), 0, 1).
isNullExprs := make([]expression.Expression, 0, len(exprs))
for _, expr := range exprs {
isNullExpr := expression.NewFunctionInternal(ctx, ast.IsNull, types.NewFieldType(mysql.TypeTiny), expr.Clone())
isNullExprs = append(isNullExprs, isNullExpr)
}
innerExpr := expression.ComposeDNFCondition(ctx, isNullExprs...)
newExpr := expression.NewFunctionInternal(ctx, ast.If, types.NewFieldType(mysql.TypeLonglong), innerExpr, expression.Zero, expression.One)
return newExpr
}
// See https://dev.mysql.com/doc/refman/5.7/en/group-by-functions.html
// The SUM() and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL),
// and a DOUBLE value for approximate-value arguments (FLOAT or DOUBLE).
func (a *aggregationOptimizer) rewriteSumOrAvg(ctx context.Context, exprs []expression.Expression) expression.Expression {
// FIXME: Consider the case that avg is final mode.
expr := exprs[0].Clone()
switch expr.GetType().Tp {
// Integer type should be cast to decimal.
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeInt24, mysql.TypeLong, mysql.TypeLonglong:
return expression.BuildCastFunction(ctx, expr, types.NewFieldType(mysql.TypeNewDecimal))
// Double and Decimal doesn't need to be cast.
case mysql.TypeDouble, mysql.TypeNewDecimal:
return expr
// Float should be cast to double. And other non-numeric type should be cast to double too.
default:
return expression.BuildCastFunction(ctx, expr, types.NewFieldType(mysql.TypeDouble))
}
}
// rewriteExpr will rewrite the aggregate function to expression doesn't contain aggregate function.
func (a *aggregationOptimizer) rewriteExpr(ctx context.Context, aggFunc *aggregation.AggFuncDesc) expression.Expression {
switch aggFunc.Name {
case ast.AggFuncCount:
if aggFunc.Mode == aggregation.FinalMode {
return a.rewriteSumOrAvg(ctx, aggFunc.Args)
}
return a.rewriteCount(ctx, aggFunc.Args)
case ast.AggFuncSum, ast.AggFuncAvg:
return a.rewriteSumOrAvg(ctx, aggFunc.Args)
default:
// Default we do nothing about expr.
return aggFunc.Args[0].Clone()
}
}