-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
dictionary.py
1068 lines (952 loc) · 49.6 KB
/
dictionary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A collection of dictionary-based wrappers around the "vanilla" transforms for spatial operations
defined in :py:class:`monai.transforms.spatial.array`.
Class names are ended with 'd' to denote dictionary-based transforms.
"""
from typing import Any, Dict, Hashable, Mapping, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from monai.config import KeysCollection
from monai.networks.layers.simplelayers import GaussianFilter
from monai.transforms.compose import MapTransform, Randomizable
from monai.transforms.croppad.array import CenterSpatialCrop
from monai.transforms.spatial.array import (
Flip,
Orientation,
Rand2DElastic,
Rand3DElastic,
RandAffine,
Resize,
Rotate,
Rotate90,
Spacing,
Zoom,
)
from monai.transforms.utils import create_grid
from monai.utils import (
GridSampleMode,
GridSamplePadMode,
InterpolateMode,
NumpyPadMode,
ensure_tuple,
ensure_tuple_rep,
fall_back_tuple,
)
__all__ = [
"Spacingd",
"Orientationd",
"Rotate90d",
"RandRotate90d",
"Resized",
"RandAffined",
"Rand2DElasticd",
"Rand3DElasticd",
"Flipd",
"RandFlipd",
"Rotated",
"RandRotated",
"Zoomd",
"RandZoomd",
"SpacingD",
"SpacingDict",
"OrientationD",
"OrientationDict",
"Rotate90D",
"Rotate90Dict",
"RandRotate90D",
"RandRotate90Dict",
"ResizeD",
"ResizeDict",
"RandAffineD",
"RandAffineDict",
"Rand2DElasticD",
"Rand2DElasticDict",
"Rand3DElasticD",
"Rand3DElasticDict",
"FlipD",
"FlipDict",
"RandFlipD",
"RandFlipDict",
"RotateD",
"RotateDict",
"RandRotateD",
"RandRotateDict",
"ZoomD",
"ZoomDict",
"RandZoomD",
"RandZoomDict",
]
GridSampleModeSequence = Union[Sequence[Union[GridSampleMode, str]], GridSampleMode, str]
GridSamplePadModeSequence = Union[Sequence[Union[GridSamplePadMode, str]], GridSamplePadMode, str]
InterpolateModeSequence = Union[Sequence[Union[InterpolateMode, str]], InterpolateMode, str]
NumpyPadModeSequence = Union[Sequence[Union[NumpyPadMode, str]], NumpyPadMode, str]
class Spacingd(MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Spacing`.
This transform assumes the ``data`` dictionary has a key for the input
data's metadata and contains `affine` field. The key is formed by ``key_{meta_key_postfix}``.
After resampling the input array, this transform will write the new affine
to the `affine` field of metadata which is formed by ``key_{meta_key_postfix}``.
see also:
:py:class:`monai.transforms.Spacing`
"""
def __init__(
self,
keys: KeysCollection,
pixdim: Sequence[float],
diagonal: bool = False,
mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
padding_mode: GridSamplePadModeSequence = GridSamplePadMode.BORDER,
align_corners: Union[Sequence[bool], bool] = False,
dtype: Optional[Union[Sequence[np.dtype], np.dtype]] = np.float64,
meta_key_postfix: str = "meta_dict",
) -> None:
"""
Args:
pixdim: output voxel spacing.
diagonal: whether to resample the input to have a diagonal affine matrix.
If True, the input data is resampled to the following affine::
np.diag((pixdim_0, pixdim_1, pixdim_2, 1))
This effectively resets the volume to the world coordinate system (RAS+ in nibabel).
The original orientation, rotation, shearing are not preserved.
If False, the axes orientation, orthogonal rotation and
translations components from the original affine will be
preserved in the target affine. This option will not flip/swap
axes against the original ones.
mode: {``"bilinear"``, ``"nearest"``}
Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
Padding mode for outside grid values. Defaults to ``"border"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
align_corners: Geometrically, we consider the pixels of the input as squares rather than points.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of bool, each element corresponds to a key in ``keys``.
dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.
If None, use the data type of input data. To be compatible with other modules,
the output data type is always ``np.float32``.
It also can be a sequence of np.dtype, each element corresponds to a key in ``keys``.
meta_key_postfix: use `key_{postfix}` to to fetch the meta data according to the key data,
default is `meta_dict`, the meta data is a dictionary object.
For example, to handle key `image`, read/write affine matrices from the
metadata `image_meta_dict` dictionary's `affine` field.
Raises:
TypeError: When ``meta_key_postfix`` is not a ``str``.
"""
super().__init__(keys)
self.spacing_transform = Spacing(pixdim, diagonal=diagonal)
self.mode = ensure_tuple_rep(mode, len(self.keys))
self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))
self.align_corners = ensure_tuple_rep(align_corners, len(self.keys))
self.dtype = ensure_tuple_rep(dtype, len(self.keys))
if not isinstance(meta_key_postfix, str):
raise TypeError(f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}.")
self.meta_key_postfix = meta_key_postfix
def __call__(
self, data: Mapping[Union[Hashable, str], Dict[str, np.ndarray]]
) -> Dict[Union[Hashable, str], Union[np.ndarray, Dict[str, np.ndarray]]]:
d = dict(data)
for idx, key in enumerate(self.keys):
meta_data = d[f"{key}_{self.meta_key_postfix}"]
# resample array of each corresponding key
# using affine fetched from d[affine_key]
d[key], _, new_affine = self.spacing_transform(
data_array=d[key],
affine=meta_data["affine"],
mode=self.mode[idx],
padding_mode=self.padding_mode[idx],
align_corners=self.align_corners[idx],
dtype=self.dtype[idx],
)
# set the 'affine' key
meta_data["affine"] = new_affine
return d
class Orientationd(MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Orientation`.
This transform assumes the ``data`` dictionary has a key for the input
data's metadata and contains `affine` field. The key is formed by ``key_{meta_key_postfix}``.
After reorienting the input array, this transform will write the new affine
to the `affine` field of metadata which is formed by ``key_{meta_key_postfix}``.
"""
def __init__(
self,
keys: KeysCollection,
axcodes: Optional[str] = None,
as_closest_canonical: bool = False,
labels: Optional[Sequence[Tuple[str, str]]] = tuple(zip("LPI", "RAS")),
meta_key_postfix: str = "meta_dict",
) -> None:
"""
Args:
axcodes: N elements sequence for spatial ND input's orientation.
e.g. axcodes='RAS' represents 3D orientation:
(Left, Right), (Posterior, Anterior), (Inferior, Superior).
default orientation labels options are: 'L' and 'R' for the first dimension,
'P' and 'A' for the second, 'I' and 'S' for the third.
as_closest_canonical: if True, load the image as closest to canonical axis format.
labels: optional, None or sequence of (2,) sequences
(2,) sequences are labels for (beginning, end) of output axis.
Defaults to ``(('L', 'R'), ('P', 'A'), ('I', 'S'))``.
meta_key_postfix: use `key_{postfix}` to to fetch the meta data according to the key data,
default is `meta_dict`, the meta data is a dictionary object.
For example, to handle key `image`, read/write affine matrices from the
metadata `image_meta_dict` dictionary's `affine` field.
Raises:
TypeError: When ``meta_key_postfix`` is not a ``str``.
See Also:
`nibabel.orientations.ornt2axcodes`.
"""
super().__init__(keys)
self.ornt_transform = Orientation(axcodes=axcodes, as_closest_canonical=as_closest_canonical, labels=labels)
if not isinstance(meta_key_postfix, str):
raise TypeError(f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}.")
self.meta_key_postfix = meta_key_postfix
def __call__(
self, data: Mapping[Union[Hashable, str], Dict[str, np.ndarray]]
) -> Dict[Union[Hashable, str], Union[np.ndarray, Dict[str, np.ndarray]]]:
d = dict(data)
for key in self.keys:
meta_data = d[f"{key}_{self.meta_key_postfix}"]
d[key], _, new_affine = self.ornt_transform(d[key], affine=meta_data["affine"])
meta_data["affine"] = new_affine
return d
class Rotate90d(MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Rotate90`.
"""
def __init__(self, keys: KeysCollection, k: int = 1, spatial_axes: Tuple[int, int] = (0, 1)) -> None:
"""
Args:
k: number of times to rotate by 90 degrees.
spatial_axes: 2 int numbers, defines the plane to rotate with 2 spatial axes.
Default: (0, 1), this is the first two axis in spatial dimensions.
"""
super().__init__(keys)
self.rotator = Rotate90(k, spatial_axes)
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:
d = dict(data)
for key in self.keys:
d[key] = self.rotator(d[key])
return d
class RandRotate90d(Randomizable, MapTransform):
"""
Dictionary-based version :py:class:`monai.transforms.RandRotate90`.
With probability `prob`, input arrays are rotated by 90 degrees
in the plane specified by `spatial_axes`.
"""
def __init__(
self,
keys: KeysCollection,
prob: float = 0.1,
max_k: int = 3,
spatial_axes: Tuple[int, int] = (0, 1),
) -> None:
"""
Args:
keys: keys of the corresponding items to be transformed.
See also: :py:class:`monai.transforms.compose.MapTransform`
prob: probability of rotating.
(Default 0.1, with 10% probability it returns a rotated array.)
max_k: number of rotations will be sampled from `np.random.randint(max_k) + 1`.
(Default 3)
spatial_axes: 2 int numbers, defines the plane to rotate with 2 spatial axes.
Default: (0, 1), this is the first two axis in spatial dimensions.
"""
super().__init__(keys)
self.prob = min(max(prob, 0.0), 1.0)
self.max_k = max_k
self.spatial_axes = spatial_axes
self._do_transform = False
self._rand_k = 0
def randomize(self, data: Optional[Any] = None) -> None:
self._rand_k = self.R.randint(self.max_k) + 1
self._do_transform = self.R.random() < self.prob
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Mapping[Hashable, np.ndarray]:
self.randomize()
if not self._do_transform:
return data
rotator = Rotate90(self._rand_k, self.spatial_axes)
d = dict(data)
for key in self.keys:
d[key] = rotator(d[key])
return d
class Resized(MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Resize`.
Args:
keys: keys of the corresponding items to be transformed.
See also: :py:class:`monai.transforms.compose.MapTransform`
spatial_size: expected shape of spatial dimensions after resize operation.
if the components of the `spatial_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``}
The interpolation mode. Defaults to ``"area"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
It also can be a sequence of string, each element corresponds to a key in ``keys``.
align_corners: This only has an effect when mode is
'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: None.
See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
It also can be a sequence of bool or None, each element corresponds to a key in ``keys``.
"""
def __init__(
self,
keys: KeysCollection,
spatial_size: Union[Sequence[int], int],
mode: InterpolateModeSequence = InterpolateMode.AREA,
align_corners: Union[Sequence[Optional[bool]], Optional[bool]] = None,
) -> None:
super().__init__(keys)
self.mode = ensure_tuple_rep(mode, len(self.keys))
self.align_corners = ensure_tuple_rep(align_corners, len(self.keys))
self.resizer = Resize(spatial_size=spatial_size)
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:
d = dict(data)
for idx, key in enumerate(self.keys):
d[key] = self.resizer(d[key], mode=self.mode[idx], align_corners=self.align_corners[idx])
return d
class RandAffined(Randomizable, MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.RandAffine`.
"""
def __init__(
self,
keys: KeysCollection,
spatial_size: Optional[Union[Sequence[int], int]] = None,
prob: float = 0.1,
rotate_range: Optional[Union[Sequence[float], float]] = None,
shear_range: Optional[Union[Sequence[float], float]] = None,
translate_range: Optional[Union[Sequence[float], float]] = None,
scale_range: Optional[Union[Sequence[float], float]] = None,
mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,
as_tensor_output: bool = True,
device: Optional[torch.device] = None,
) -> None:
"""
Args:
keys: keys of the corresponding items to be transformed.
spatial_size: output image spatial size.
if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,
the transform will use the spatial size of `img`.
if the components of the `spatial_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
prob: probability of returning a randomized affine grid.
defaults to 0.1, with 10% chance returns a randomized grid.
rotate_range: angle range in radians. rotate_range[0] with be used to generate the 1st rotation
parameter from `uniform[-rotate_range[0], rotate_range[0])`. Similarly, `rotate_range[1]` and
`rotate_range[2]` are used in 3D affine for the range of 2nd and 3rd axes.
shear_range: shear_range[0] with be used to generate the 1st shearing parameter from
`uniform[-shear_range[0], shear_range[0])`. Similarly, `shear_range[1]` to
`shear_range[N]` controls the range of the uniform distribution used to generate the 2nd to
N-th parameter.
translate_range : translate_range[0] with be used to generate the 1st shift parameter from
`uniform[-translate_range[0], translate_range[0])`. Similarly, `translate_range[1]`
to `translate_range[N]` controls the range of the uniform distribution used to generate
the 2nd to N-th parameter.
scale_range: scaling_range[0] with be used to generate the 1st scaling factor from
`uniform[-scale_range[0], scale_range[0]) + 1.0`. Similarly, `scale_range[1]` to
`scale_range[N]` controls the range of the uniform distribution used to generate the 2nd to
N-th parameter.
mode: {``"bilinear"``, ``"nearest"``}
Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
Padding mode for outside grid values. Defaults to ``"reflection"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
as_tensor_output: the computation is implemented using pytorch tensors, this option specifies
whether to convert it back to numpy arrays.
device: device on which the tensor will be allocated.
See also:
- :py:class:`monai.transforms.compose.MapTransform`
- :py:class:`RandAffineGrid` for the random affine parameters configurations.
"""
super().__init__(keys)
self.rand_affine = RandAffine(
prob=prob,
rotate_range=rotate_range,
shear_range=shear_range,
translate_range=translate_range,
scale_range=scale_range,
spatial_size=spatial_size,
as_tensor_output=as_tensor_output,
device=device,
)
self.mode = ensure_tuple_rep(mode, len(self.keys))
self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))
def set_random_state(
self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None
) -> "RandAffined":
self.rand_affine.set_random_state(seed, state)
super().set_random_state(seed, state)
return self
def randomize(self, data: Optional[Any] = None) -> None:
self.rand_affine.randomize()
def __call__(
self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]
) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]:
d = dict(data)
self.randomize()
sp_size = fall_back_tuple(self.rand_affine.spatial_size, data[self.keys[0]].shape[1:])
if self.rand_affine.do_transform:
grid = self.rand_affine.rand_affine_grid(spatial_size=sp_size)
else:
grid = create_grid(spatial_size=sp_size)
for idx, key in enumerate(self.keys):
d[key] = self.rand_affine.resampler(d[key], grid, mode=self.mode[idx], padding_mode=self.padding_mode[idx])
return d
class Rand2DElasticd(Randomizable, MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Rand2DElastic`.
"""
def __init__(
self,
keys: KeysCollection,
spacing: Union[Tuple[float, float], float],
magnitude_range: Tuple[float, float],
spatial_size: Optional[Union[Sequence[int], int]] = None,
prob: float = 0.1,
rotate_range: Optional[Union[Sequence[float], float]] = None,
shear_range: Optional[Union[Sequence[float], float]] = None,
translate_range: Optional[Union[Sequence[float], float]] = None,
scale_range: Optional[Union[Sequence[float], float]] = None,
mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,
as_tensor_output: bool = False,
device: Optional[torch.device] = None,
) -> None:
"""
Args:
keys: keys of the corresponding items to be transformed.
spacing: distance in between the control points.
magnitude_range: 2 int numbers, the random offsets will be generated from
``uniform[magnitude[0], magnitude[1])``.
spatial_size: specifying output image spatial size [h, w].
if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,
the transform will use the spatial size of `img`.
if the components of the `spatial_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `spatial_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
prob: probability of returning a randomized affine grid.
defaults to 0.1, with 10% chance returns a randomized grid,
otherwise returns a ``spatial_size`` centered area extracted from the input image.
rotate_range: angle range in radians. rotate_range[0] with be used to generate the 1st rotation
parameter from `uniform[-rotate_range[0], rotate_range[0])`.
shear_range: shear_range[0] with be used to generate the 1st shearing parameter from
`uniform[-shear_range[0], shear_range[0])`. Similarly, `shear_range[1]` controls
the range of the uniform distribution used to generate the 2nd parameter.
translate_range : translate_range[0] with be used to generate the 1st shift parameter from
`uniform[-translate_range[0], translate_range[0])`. Similarly, `translate_range[1]` controls
the range of the uniform distribution used to generate the 2nd parameter.
scale_range: scaling_range[0] with be used to generate the 1st scaling factor from
`uniform[-scale_range[0], scale_range[0]) + 1.0`. Similarly, `scale_range[1]` controls
the range of the uniform distribution used to generate the 2nd parameter.
mode: {``"bilinear"``, ``"nearest"``}
Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
Padding mode for outside grid values. Defaults to ``"reflection"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
as_tensor_output: the computation is implemented using pytorch tensors, this option specifies
whether to convert it back to numpy arrays.
device: device on which the tensor will be allocated.
See also:
- :py:class:`RandAffineGrid` for the random affine parameters configurations.
- :py:class:`Affine` for the affine transformation parameters configurations.
"""
super().__init__(keys)
self.rand_2d_elastic = Rand2DElastic(
spacing=spacing,
magnitude_range=magnitude_range,
prob=prob,
rotate_range=rotate_range,
shear_range=shear_range,
translate_range=translate_range,
scale_range=scale_range,
spatial_size=spatial_size,
as_tensor_output=as_tensor_output,
device=device,
)
self.mode = ensure_tuple_rep(mode, len(self.keys))
self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))
def set_random_state(
self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None
) -> "Rand2DElasticd":
self.rand_2d_elastic.set_random_state(seed, state)
super().set_random_state(seed, state)
return self
def randomize(self, spatial_size: Sequence[int]) -> None:
self.rand_2d_elastic.randomize(spatial_size)
def __call__(
self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]
) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]:
d = dict(data)
sp_size = fall_back_tuple(self.rand_2d_elastic.spatial_size, data[self.keys[0]].shape[1:])
self.randomize(spatial_size=sp_size)
if self.rand_2d_elastic.do_transform:
grid = self.rand_2d_elastic.deform_grid(spatial_size=sp_size)
grid = self.rand_2d_elastic.rand_affine_grid(grid=grid)
grid = torch.nn.functional.interpolate( # type: ignore
recompute_scale_factor=True,
input=grid.unsqueeze(0),
scale_factor=ensure_tuple_rep(self.rand_2d_elastic.deform_grid.spacing, 2),
mode=InterpolateMode.BICUBIC.value,
align_corners=False,
)
grid = CenterSpatialCrop(roi_size=sp_size)(grid[0])
else:
grid = create_grid(spatial_size=sp_size)
for idx, key in enumerate(self.keys):
d[key] = self.rand_2d_elastic.resampler(
d[key], grid, mode=self.mode[idx], padding_mode=self.padding_mode[idx]
)
return d
class Rand3DElasticd(Randomizable, MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Rand3DElastic`.
"""
def __init__(
self,
keys: KeysCollection,
sigma_range: Tuple[float, float],
magnitude_range: Tuple[float, float],
spatial_size: Optional[Union[Sequence[int], int]] = None,
prob: float = 0.1,
rotate_range: Optional[Union[Sequence[float], float]] = None,
shear_range: Optional[Union[Sequence[float], float]] = None,
translate_range: Optional[Union[Sequence[float], float]] = None,
scale_range: Optional[Union[Sequence[float], float]] = None,
mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
padding_mode: GridSamplePadModeSequence = GridSamplePadMode.REFLECTION,
as_tensor_output: bool = False,
device: Optional[torch.device] = None,
) -> None:
"""
Args:
keys: keys of the corresponding items to be transformed.
sigma_range: a Gaussian kernel with standard deviation sampled from
``uniform[sigma_range[0], sigma_range[1])`` will be used to smooth the random offset grid.
magnitude_range: the random offsets on the grid will be generated from
``uniform[magnitude[0], magnitude[1])``.
spatial_size: specifying output image spatial size [h, w, d].
if `spatial_size` and `self.spatial_size` are not defined, or smaller than 1,
the transform will use the spatial size of `img`.
if the components of the `spatial_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `spatial_size=(32, 32, -1)` will be adapted
to `(32, 32, 64)` if the third spatial dimension size of img is `64`.
prob: probability of returning a randomized affine grid.
defaults to 0.1, with 10% chance returns a randomized grid,
otherwise returns a ``spatial_size`` centered area extracted from the input image.
rotate_range: angle range in radians. rotate_range[0] with be used to generate the 1st rotation
parameter from `uniform[-rotate_range[0], rotate_range[0])`. Similarly, `rotate_range[1]` and
`rotate_range[2]` are used in 3D affine for the range of 2nd and 3rd axes.
shear_range: shear_range[0] with be used to generate the 1st shearing parameter from
`uniform[-shear_range[0], shear_range[0])`. Similarly, `shear_range[1]` and `shear_range[2]`
controls the range of the uniform distribution used to generate the 2nd and 3rd parameters.
translate_range : translate_range[0] with be used to generate the 1st shift parameter from
`uniform[-translate_range[0], translate_range[0])`. Similarly, `translate_range[1]` and
`translate_range[2]` controls the range of the uniform distribution used to generate
the 2nd and 3rd parameters.
scale_range: scaling_range[0] with be used to generate the 1st scaling factor from
`uniform[-scale_range[0], scale_range[0]) + 1.0`. Similarly, `scale_range[1]` and `scale_range[2]`
controls the range of the uniform distribution used to generate the 2nd and 3rd parameters.
mode: {``"bilinear"``, ``"nearest"``}
Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
Padding mode for outside grid values. Defaults to ``"reflection"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
as_tensor_output: the computation is implemented using pytorch tensors, this option specifies
whether to convert it back to numpy arrays.
device: device on which the tensor will be allocated.
See also:
- :py:class:`RandAffineGrid` for the random affine parameters configurations.
- :py:class:`Affine` for the affine transformation parameters configurations.
"""
super().__init__(keys)
self.rand_3d_elastic = Rand3DElastic(
sigma_range=sigma_range,
magnitude_range=magnitude_range,
prob=prob,
rotate_range=rotate_range,
shear_range=shear_range,
translate_range=translate_range,
scale_range=scale_range,
spatial_size=spatial_size,
as_tensor_output=as_tensor_output,
device=device,
)
self.mode = ensure_tuple_rep(mode, len(self.keys))
self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))
def set_random_state(
self, seed: Optional[int] = None, state: Optional[np.random.RandomState] = None
) -> "Rand3DElasticd":
self.rand_3d_elastic.set_random_state(seed, state)
super().set_random_state(seed, state)
return self
def randomize(self, grid_size: Sequence[int]) -> None:
self.rand_3d_elastic.randomize(grid_size)
def __call__(
self, data: Mapping[Hashable, Union[np.ndarray, torch.Tensor]]
) -> Dict[Hashable, Union[np.ndarray, torch.Tensor]]:
d = dict(data)
sp_size = fall_back_tuple(self.rand_3d_elastic.spatial_size, data[self.keys[0]].shape[1:])
self.randomize(grid_size=sp_size)
grid = create_grid(spatial_size=sp_size)
if self.rand_3d_elastic.do_transform:
device = self.rand_3d_elastic.device
grid = torch.tensor(grid).to(device)
gaussian = GaussianFilter(spatial_dims=3, sigma=self.rand_3d_elastic.sigma, truncated=3.0).to(device)
offset = torch.tensor(self.rand_3d_elastic.rand_offset, device=device).unsqueeze(0)
grid[:3] += gaussian(offset)[0] * self.rand_3d_elastic.magnitude
grid = self.rand_3d_elastic.rand_affine_grid(grid=grid)
for idx, key in enumerate(self.keys):
d[key] = self.rand_3d_elastic.resampler(
d[key], grid, mode=self.mode[idx], padding_mode=self.padding_mode[idx]
)
return d
class Flipd(MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Flip`.
See `numpy.flip` for additional details.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html
Args:
keys: Keys to pick data for transformation.
spatial_axis: Spatial axes along which to flip over. Default is None.
"""
def __init__(self, keys: KeysCollection, spatial_axis: Optional[Union[Sequence[int], int]] = None) -> None:
super().__init__(keys)
self.flipper = Flip(spatial_axis=spatial_axis)
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:
d = dict(data)
for key in self.keys:
d[key] = self.flipper(d[key])
return d
class RandFlipd(Randomizable, MapTransform):
"""
Dictionary-based version :py:class:`monai.transforms.RandFlip`.
See `numpy.flip` for additional details.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html
Args:
keys: Keys to pick data for transformation.
prob: Probability of flipping.
spatial_axis: Spatial axes along which to flip over. Default is None.
"""
def __init__(
self,
keys: KeysCollection,
prob: float = 0.1,
spatial_axis: Optional[Union[Sequence[int], int]] = None,
) -> None:
super().__init__(keys)
self.spatial_axis = spatial_axis
self.prob = prob
self._do_transform = False
self.flipper = Flip(spatial_axis=spatial_axis)
def randomize(self, data: Optional[Any] = None) -> None:
self._do_transform = self.R.random_sample() < self.prob
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:
self.randomize()
d = dict(data)
if not self._do_transform:
return d
for key in self.keys:
d[key] = self.flipper(d[key])
return d
class Rotated(MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Rotate`.
Args:
keys: Keys to pick data for transformation.
angle: Rotation angle(s) in radians.
keep_size: If it is False, the output shape is adapted so that the
input array is contained completely in the output.
If it is True, the output shape is the same as the input. Default is True.
mode: {``"bilinear"``, ``"nearest"``}
Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
Padding mode for outside grid values. Defaults to ``"border"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
align_corners: Defaults to False.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of bool, each element corresponds to a key in ``keys``.
dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.
If None, use the data type of input data. To be compatible with other modules,
the output data type is always ``np.float32``.
It also can be a sequence of dtype or None, each element corresponds to a key in ``keys``.
"""
def __init__(
self,
keys: KeysCollection,
angle: Union[Sequence[float], float],
keep_size: bool = True,
mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
padding_mode: GridSamplePadModeSequence = GridSamplePadMode.BORDER,
align_corners: Union[Sequence[bool], bool] = False,
dtype: Union[Sequence[Optional[np.dtype]], Optional[np.dtype]] = np.float64,
) -> None:
super().__init__(keys)
self.rotator = Rotate(angle=angle, keep_size=keep_size)
self.mode = ensure_tuple_rep(mode, len(self.keys))
self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))
self.align_corners = ensure_tuple_rep(align_corners, len(self.keys))
self.dtype = ensure_tuple_rep(dtype, len(self.keys))
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:
d = dict(data)
for idx, key in enumerate(self.keys):
d[key] = self.rotator(
d[key],
mode=self.mode[idx],
padding_mode=self.padding_mode[idx],
align_corners=self.align_corners[idx],
dtype=self.dtype[idx],
)
return d
class RandRotated(Randomizable, MapTransform):
"""
Dictionary-based version :py:class:`monai.transforms.RandRotate`
Randomly rotates the input arrays.
Args:
keys: Keys to pick data for transformation.
range_x: Range of rotation angle in radians in the plane defined by the first and second axes.
If single number, angle is uniformly sampled from (-range_x, range_x).
range_y: Range of rotation angle in radians in the plane defined by the first and third axes.
If single number, angle is uniformly sampled from (-range_y, range_y).
range_z: Range of rotation angle in radians in the plane defined by the second and third axes.
If single number, angle is uniformly sampled from (-range_z, range_z).
prob: Probability of rotation.
keep_size: If it is False, the output shape is adapted so that the
input array is contained completely in the output.
If it is True, the output shape is the same as the input. Default is True.
mode: {``"bilinear"``, ``"nearest"``}
Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
Padding mode for outside grid values. Defaults to ``"border"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#grid-sample
It also can be a sequence of string, each element corresponds to a key in ``keys``.
align_corners: Defaults to False.
See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
It also can be a sequence of bool, each element corresponds to a key in ``keys``.
dtype: data type for resampling computation. Defaults to ``np.float64`` for best precision.
If None, use the data type of input data. To be compatible with other modules,
the output data type is always ``np.float32``.
It also can be a sequence of dtype or None, each element corresponds to a key in ``keys``.
"""
def __init__(
self,
keys: KeysCollection,
range_x: Union[Tuple[float, float], float] = 0.0,
range_y: Union[Tuple[float, float], float] = 0.0,
range_z: Union[Tuple[float, float], float] = 0.0,
prob: float = 0.1,
keep_size: bool = True,
mode: GridSampleModeSequence = GridSampleMode.BILINEAR,
padding_mode: GridSamplePadModeSequence = GridSamplePadMode.BORDER,
align_corners: Union[Sequence[bool], bool] = False,
dtype: Union[Sequence[Optional[np.dtype]], Optional[np.dtype]] = np.float64,
) -> None:
super().__init__(keys)
self.range_x = ensure_tuple(range_x)
if len(self.range_x) == 1:
self.range_x = tuple(sorted([-self.range_x[0], self.range_x[0]]))
self.range_y = ensure_tuple(range_y)
if len(self.range_y) == 1:
self.range_y = tuple(sorted([-self.range_y[0], self.range_y[0]]))
self.range_z = ensure_tuple(range_z)
if len(self.range_z) == 1:
self.range_z = tuple(sorted([-self.range_z[0], self.range_z[0]]))
self.prob = prob
self.keep_size = keep_size
self.mode = ensure_tuple_rep(mode, len(self.keys))
self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))
self.align_corners = ensure_tuple_rep(align_corners, len(self.keys))
self.dtype = ensure_tuple_rep(dtype, len(self.keys))
self._do_transform = False
self.x = 0.0
self.y = 0.0
self.z = 0.0
def randomize(self, data: Optional[Any] = None) -> None:
self._do_transform = self.R.random_sample() < self.prob
self.x = self.R.uniform(low=self.range_x[0], high=self.range_x[1])
self.y = self.R.uniform(low=self.range_y[0], high=self.range_y[1])
self.z = self.R.uniform(low=self.range_z[0], high=self.range_z[1])
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:
self.randomize()
d = dict(data)
if not self._do_transform:
return d
rotator = Rotate(
angle=self.x if d[self.keys[0]].ndim == 3 else (self.x, self.y, self.z),
keep_size=self.keep_size,
)
for idx, key in enumerate(self.keys):
d[key] = rotator(
d[key],
mode=self.mode[idx],
padding_mode=self.padding_mode[idx],
align_corners=self.align_corners[idx],
dtype=self.dtype[idx],
)
return d
class Zoomd(MapTransform):
"""
Dictionary-based wrapper of :py:class:`monai.transforms.Zoom`.
Args:
keys: Keys to pick data for transformation.
zoom: The zoom factor along the spatial axes.
If a float, zoom is the same for each spatial axis.
If a sequence, zoom should contain one value for each spatial axis.
mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``}
The interpolation mode. Defaults to ``"area"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
It also can be a sequence of string, each element corresponds to a key in ``keys``.
padding_mode: {``"constant"``, ``"edge``", ``"linear_ramp``", ``"maximum``", ``"mean``", `"median``",
``"minimum``", `"reflect``", ``"symmetric``", ``"wrap``", ``"empty``", ``"<function>``"}
The mode to pad data after zooming.
See also: https://numpy.org/doc/stable/reference/generated/numpy.pad.html
align_corners: This only has an effect when mode is
'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: None.
See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
It also can be a sequence of bool or None, each element corresponds to a key in ``keys``.
keep_size: Should keep original size (pad if needed), default is True.
"""
def __init__(
self,
keys: KeysCollection,
zoom: Union[Sequence[float], float],
mode: InterpolateModeSequence = InterpolateMode.AREA,
padding_mode: NumpyPadModeSequence = NumpyPadMode.EDGE,
align_corners: Union[Sequence[Optional[bool]], Optional[bool]] = None,
keep_size: bool = True,
) -> None:
super().__init__(keys)
self.mode = ensure_tuple_rep(mode, len(self.keys))
self.padding_mode = ensure_tuple_rep(padding_mode, len(self.keys))
self.align_corners = ensure_tuple_rep(align_corners, len(self.keys))
self.zoomer = Zoom(zoom=zoom, keep_size=keep_size)
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]:
d = dict(data)
for idx, key in enumerate(self.keys):
d[key] = self.zoomer(
d[key],
mode=self.mode[idx],
padding_mode=self.padding_mode[idx],
align_corners=self.align_corners[idx],
)
return d
class RandZoomd(Randomizable, MapTransform):
"""
Dict-based version :py:class:`monai.transforms.RandZoom`.
Args:
keys: Keys to pick data for transformation.
prob: Probability of zooming.
min_zoom: Min zoom factor. Can be float or sequence same size as image.
If a float, select a random factor from `[min_zoom, max_zoom]` then apply to all spatial dims
to keep the original spatial shape ratio.
If a sequence, min_zoom should contain one value for each spatial axis.
If 2 values provided for 3D data, use the first value for both H & W dims to keep the same zoom ratio.
max_zoom: Max zoom factor. Can be float or sequence same size as image.
If a float, select a random factor from `[min_zoom, max_zoom]` then apply to all spatial dims
to keep the original spatial shape ratio.
If a sequence, max_zoom should contain one value for each spatial axis.
If 2 values provided for 3D data, use the first value for both H & W dims to keep the same zoom ratio.
mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``, ``"area"``}
The interpolation mode. Defaults to ``"area"``.
See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
It also can be a sequence of string, each element corresponds to a key in ``keys``.
padding_mode: {``"constant"``, ``"edge``", ``"linear_ramp``", ``"maximum``", ``"mean``", `"median``",
``"minimum``", `"reflect``", ``"symmetric``", ``"wrap``", ``"empty``", ``"<function>``"}
The mode to pad data after zooming.
See also: https://numpy.org/doc/stable/reference/generated/numpy.pad.html
align_corners: This only has an effect when mode is
'linear', 'bilinear', 'bicubic' or 'trilinear'. Default: None.
See also: https://pytorch.org/docs/stable/nn.functional.html#interpolate
It also can be a sequence of bool or None, each element corresponds to a key in ``keys``.
keep_size: Should keep original size (pad if needed), default is True.
"""