-
Notifications
You must be signed in to change notification settings - Fork 0
/
mci.Rmd
90 lines (68 loc) · 1.44 KB
/
mci.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
title: "Study 2 - Masculine Crime Inventory"
author: "Timothy J. Luke & Pär Stern"
date: "12 december 2018"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
library(tidyverse)
mci <- read_csv("./data/MCI_raw.csv")
mci_long <- mci %>%
gather(key = "crime", value = "manliness", names(mci[6:33]))
```
## Sample information
```{r}
mci %>%
summarise(
Male = sum(gender == "Male"),
Female = sum(gender == "Female"),
"Mean Age" = round(mean(age, na.rm = TRUE), 2),
"SD Age" = round(sd(age, na.rm = TRUE), 2),
"Median Age" = round(median(age, na.rm = TRUE), 2)
) %>%
knitr::kable()
```
```{r}
race_table <- table(mci$ethnicity) %>%
broom::tidy() %>%
rename(
Ethnicity = Var1,
Frequency = n
) %>%
arrange(desc(Frequency))
knitr::kable(race_table)
```
## Descriptives
```{r}
manly_table <- mci_long %>%
group_by(crime) %>%
summarise(
mean = mean(manliness, na.rm = TRUE),
sd = sd(manliness, na.rm = TRUE),
median = median(manliness, na.rm = TRUE)
)
knitr::kable(manly_table)
```
```{r}
manly_desc <- manly_table %>%
summarise(
minimum = min(mean),
maximum = max(mean),
mean_of_means = mean(mean),
sd = sd(mean)
)
knitr::kable(manly_desc)
```
```{r}
ggplot(mci_long,
aes(
x = manliness
)) +
facet_wrap(~crime,
nrow = 8) +
geom_histogram(
binwidth = 1
) +
theme_classic()
```