-
Notifications
You must be signed in to change notification settings - Fork 0
/
phenotype.py
61 lines (47 loc) · 2.38 KB
/
phenotype.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import jax
import jax.numpy as jnp
from jax import random
from jax.example_libraries.stax import Dense, Relu, serial
# Define a function to translate the genome into phenotype
def translate_genome(genome):
# Perform some calculations using the genome to generate the phenotype
phenotype = jnp.sum(genome) # Example calculation
return phenotype
# Define a function to evaluate the fitness of an individual
def evaluate_fitness(genome):
phenotype = translate_genome(genome)
fitness = 1 / (1 + jnp.abs(phenotype - 10)) # Example fitness function
return fitness
def genome_to_network_params(genome):
# Extract the node and connection genes from the genome
node_genes = genome.nodes
connection_genes = genome.connections
# Determine the number of input, output, and hidden nodes
num_inputs = sum(1 for node_gene in node_genes if node_gene.node_type == 'input')
num_outputs = sum(1 for node_gene in node_genes if node_gene.node_type == 'output')
num_hidden = len(node_genes) - num_inputs - num_outputs
# Initialize the weights
if num_hidden > 0:
input_weights_shape = (num_inputs, num_hidden)
hidden_weights_shape = (num_hidden, num_hidden)
output_weights_shape = (num_hidden, num_outputs)
input_weights = jnp.zeros(input_weights_shape)
hidden_weights = jnp.zeros(hidden_weights_shape)
output_weights = jnp.zeros(output_weights_shape)
params = {'input_weights': input_weights, 'hidden_weights': hidden_weights, 'output_weights': output_weights}
else:
weights_shape = (num_inputs, num_outputs)
weights = jnp.zeros(weights_shape)
params = {'weights': weights}
# Set the weights based on the connection genes
for connection_gene in connection_genes:
if connection_gene.enabled:
if node_genes[connection_gene.out_node].node_type == 'hidden':
out_node_index = next((i for i, node_gene in enumerate(node_genes) if node_gene.node_id == connection_gene.out_node), None) - num_inputs
in_node_index = next((i for i, node_gene in enumerate(node_genes) if node_gene.node_id == connection_gene.in_node), None)
params['hidden_weights'][in_node_index, out_node_index] = connection_gene.weight
return params
def activation(x):
return jnp.tanh(x)
def forward(params, x):
pass