We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
You can continue the conversation there. Go to discussion →
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
采用cpu进行ocr预测,都会内存泄漏 部署ocr服务后,线上有各种不同图像进行ocr识别
cpu四核,debian
######server.py###### from paddle_ocr_client import paddle_ocr_server @server.register('predict_images') def predict_images(ctx, req): resp = paddle_ocr_server.predict_images(req) return resp ######paddle_ocr_client.py###### class PaddleOcrServer(): def __init__(self) -> None: #self.ocr = PaddleOCR(enable_mkldnn=True, cpu_threads=2, use_space_char=True, lang="en", warmup=True, ir_optim=True, rec_batch_num=8, det_db_thresh=0.5, det_db_score_mode='fast', det_limit_side_len=864, det_model_dir='./inference/det_onnx/model.onnx', rec_model_dir='./inference/rec_onnx/model.onnx', rec_char_dict_path='./inference/en_dict.txt', use_onnx=True) #self.ocr = PaddleOCR(use_space_char=True, lang="en", det_db_thresh=0.5, det_db_score_mode='fast', det_limit_side_len=864, det_model_dir='./inference/det_onnx/model.onnx', rec_model_dir='./inference/rec_onnx/model.onnx', rec_char_dict_path='./inference/en_dict.txt', use_onnx=True) #self.ocr = PaddleOCR(use_gpu=True, ocr_version='PP-OCRv3', use_space_char=True, lang="en", warmup=True, enable_mkldnn=True, ir_optim=True, cpu_threads=2, rec_batch_num=8, det_db_thresh=0.5, det_db_score_mode='fast', det_limit_side_len=864, det_model_dir='./inference/det_onnx/model.onnx', rec_model_dir='./inference/rec_onnx/model.onnx', use_onnx=True) self.ocr = RapidOCR(config_path='inference/config.yaml') self.ocr_result = OcrResult() self.image_ocr_result = ImageOcrResult() for i in range(20): self.warmup_test() def predict_images(self, req): result_ll = [] beg_time = time.time() for image_info in req.images: result = self.ocr(image_info.data)[0] #print(result) end_time = time.time() print(1000.0 * (end_time - beg_time)) #logging.info('paddle_ocr cost: %s\n' %(str(100.0*(end_time-beg_time)))) #cost = 1000.0 * (end_time - beg_time) return self.ocr_result def warmup_test(): ### ######inference/config.yaml###### Global: text_score: 0.5 use_det: true use_cls: false use_rec: true print_verbose: false min_height: 30 width_height_ratio: 8 intra_op_num_threads: 4 inter_op_num_threads: 4 Det: intra_op_num_threads: 4 inter_op_num_threads: 4 use_cuda: false use_dml: false model_path: inference/det_slim_onnx/model.onnx limit_side_len: 576 limit_type: min thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: fast Cls: intra_op_num_threads: 4 inter_op_num_threads: 4 use_cuda: false use_dml: false model_path: inference/cls_onnx/model.onnx cls_image_shape: [3, 48, 192] cls_batch_num: 6 cls_thresh: 0.9 label_list: ['0', '180'] Rec: intra_op_num_threads: 4 inter_op_num_threads: 4 use_cuda: false use_dml: false model_path: inference/rec_slim_onnx/model.onnx rec_keys_path: inference/en_dict.txt rec_img_shape: [3, 48, 320] rec_batch_num: 6
paddleocr内部
The text was updated successfully, but these errors were encountered:
你是不是提错地方了啊,应该是PaddleOCR项目吧
Sorry, something went wrong.
请教下,paddleocr采用cpu预测,内存泄漏的问题是否还没fix。这个开源项目,速度优化的还不错,尤其是官方的模型,但是内存bug貌似一直未修复?
No branches or pull requests
问题描述 / Problem Description
采用cpu进行ocr预测,都会内存泄漏
部署ocr服务后,线上有各种不同图像进行ocr识别
运行环境 / Runtime Environment
cpu四核,debian
复现代码 / Reproduction Code
可能解决方案 / Possible solutions
paddleocr内部
The text was updated successfully, but these errors were encountered: