Skip to content
Seamless R and C++ Integration
C++ R TeX C Shell Makefile
Branch: master
Clone or download

Latest commit


Type Name Latest commit message Commit time
Failed to load latest commit information.
.github two more minor edits to github templates Nov 14, 2019
R avoid extraneous white-space in command Apr 1, 2020
docker update ci Dockerfile to R 4.0.0 Apr 25, 2020
inst Roll minor release, update NEWS May 18, 2020
local moved two stale documentation files to local/ Feb 16, 2019
man add new option windowsDebugDLL Dec 15, 2019
src define safe variant of short_file_name Apr 10, 2020
tests turn verbose tests on in dev and on Travis Dec 8, 2019
vignettes preserved comments for Eigen entry May 1, 2020
.Rbuildignore add .github to .Rbuildignore Nov 19, 2019
.Rinstignore do not exclude bin/ via .Rinstignore as we need the binary package fo… Nov 2, 2014
.codecov.yml more verbose code coverage Dec 4, 2016
.editorconfig added .editorconfig [ci skip] Apr 2, 2018
.gitattributes adding .gitattributed (closes #530) Aug 3, 2016
.gitignore release finalized two days ago Apr 4, 2020
.travis.yml coverage running in parallel with tests Mar 23, 2020
ChangeLog Roll minor release, update NEWS May 18, 2020 roll minor version, update ChangeLog and NEWS Jun 9, 2018
DESCRIPTION Roll minor release, update NEWS May 18, 2020
LICENSE adding LICENSE (and .Rbuildignore entry) Mar 24, 2017
NAMESPACE new package version exported based on header file #define Apr 25, 2019 updated ChangeLog and NEWS, rolled minor version Apr 16, 2020
Rcpp.Rproj Use vector for dynamic memory in sample Dec 14, 2016
TODO scan local includes recursively and invalidate sourcecpp cache if a l… Feb 14, 2015
cleanup two more tweaks to cleanup Oct 26, 2019
doxyfile enable navigation tree Jun 9, 2010

Rcpp: Seamless R and C++ Integration

Build Status License CRAN Dependencies Coverage Status Debian package Last Commit Downloads CRAN use CRAN indirect BioConductor use StackOverflow JSS Springer useR! TAS


The Rcpp package integrates R and C++ via R functions and a (header-only) C++ library.

All underlying R types and objects, i.e., everything a SEXP represents internally in R, are matched to corresponding C++ objects. This covers anything from vectors, matrices or lists to environments, functions and more. Each SEXP variant is automatically mapped to a dedicated C++ class. For example, numeric vectors are represented as instances of the Rcpp::NumericVector class, environments are represented as instances of Rcpp::Environment, functions are represented as Rcpp::Function, etc ... The Rcpp-introduction vignette (now published as a TAS paper; an earlier introduction was also published as a JSS paper) provides a good entry point to Rcpp as do the Rcpp website, the Rcpp page and the Rcpp Gallery. Full documentation is provided by the Rcpp book.

Other highlights:

  • The conversion from C++ to R and back is driven by the templates Rcpp::wrap and Rcpp::as which are highly flexible and extensible, as documented in the Rcpp-extending vignette.

  • Rcpp also provides Rcpp modules, a framework that allows exposing C++ functions and classes to the R level. The Rcpp-modules vignette details the current set of features of Rcpp-modules.

  • Rcpp includes a concept called Rcpp sugar that brings many R functions into C++. Sugar takes advantage of lazy evaluation and expression templates to achieve great performance while exposing a syntax that is much nicer to use than the equivalent low-level loop code. The Rcpp-sugar gives an overview of the feature.

  • Rcpp attributes provide a high-level syntax for declaring C++ functions as callable from R and automatically generating the code required to invoke them. Attributes are intended to facilitate both interactive use of C++ within R sessions as well as to support R package development. Attributes are built on top of Rcpp modules and their implementation is based on previous work in the inline package. See the Rcpp-atttributes vignettes for more details.


The package ships with nine pdf vignettes, including a recent introduction to Rcpp now published as a paper in TAS (and as a preprint in PeerJ). Also available is an earlier introduction which was published as a JSS paper)

Among the other vignettes are the Rcpp FAQ and the introduction to Rcpp Attributes. Additional documentation is available via the Rcpp book by Eddelbuettel (2013, Springer); see 'citation("Rcpp")' for details.


The Rcpp Gallery showcases over one hundred fully documented and working examples. The package RcppExamples contains a few basic examples covering the core data types.

A number of examples are included, as are 1560 unit tests which provide additional usage examples.

An earlier version of Rcpp, containing what we now call the 'classic Rcpp API' was written during 2005 and 2006 by Dominick Samperi. This code has been factored out of Rcpp into the package RcppClassic, and it is still available for code relying on the older interface. New development should always use this Rcpp package instead.

Other usage examples are provided by packages using Rcpp. As of March 2020, there are 1900 CRAN packages using Rcpp, a further 191 BioConductor packages in its current release as well as an unknown number of GitHub, Bitbucket, R-Forge, ... repositories using Rcpp. All these packages provide usage examples for Rcpp.


Released and tested versions of Rcpp are available via the CRAN network, and can be installed from within R via


To install from source, ensure you have a complete package development environment for R as discussed in the relevant documentation; also see questions 1.2 and 1.3 in the Rcpp-FAQ.


The best place for questions is the Rcpp-devel mailing list hosted at R-forge. Note that in order to keep spam down, you must be a subscriber in order to post. One can also consult the list archives to see if your question has been asked before.

Another option is to use StackOverflow and its 'rcpp' tag. Search functionality (use rcpp in squared brackets as in [rcpp] my question terms to tag the query) is very valuable as many questions have indeed been asked, and answered, before.

The issue tickets at the GitHub repo are the primary bug reporting interface. As with the other web resources, previous issues can be searched as well.


Dirk Eddelbuettel, Romain Francois, JJ Allaire, Kevin Ushey, Qiang Kou, Nathan Russell, Doug Bates, and John Chambers


GPL (>= 2)

You can’t perform that action at this time.