-
Notifications
You must be signed in to change notification settings - Fork 0
/
car.js
146 lines (133 loc) · 4.1 KB
/
car.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class Car {
constructor(x, y, width, height, controlType, maxSpeed = 3) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;
this.speed = 0;
this.acceleration = 0.2;
this.maxSpeed = maxSpeed;
this.friction = 0.05;
this.angle = 0;
this.damaged = false;
// Add a brain to the car if the controlType is "AI"
this.addBrain = controlType === "AI";
if (controlType !== "BOT") {
this.sensor = new Sensor(this);
this.brain = new NeuralNetwork([this.sensor.rayCount, 6, 4]); // Two levels of neurons
}
this.controls = new Controls(controlType);
}
update(roadBorders, traffic) {
if (!this.damaged) {
this.#move();
this.polygon = this.#createPolygon();
this.damaged = this.#assessDamage(roadBorders, traffic);
}
if (this.sensor) {
this.sensor.update(roadBorders, traffic);
const offsets = this.sensor.readings.map(s => s == null ? 0:1-s.offset); // Far away sensors are 0, closer sensors are 1
const outputs = NeuralNetwork.goForward(offsets, this.brain);
// Update controls based on the outputs
if(this.addBrain) {
this.controls.forward = outputs[0];
this.controls.left = outputs[1];
this.controls.right = outputs[2];
this.controls.backward = outputs[3];
}
}
}
#assessDamage(roadBorders, traffic) {
for (let i = 0; i < roadBorders.length; i++) {
if (polysIntersect(this.polygon, roadBorders[i])) {
return true;
}
}
for (let i = 0; i < traffic.length; i++) {
if (polysIntersect(this.polygon, traffic[i].polygon)) {
return true;
}
}
return false;
}
#createPolygon() {
const points = [];
const rad = Math.hypot(this.width, this.height) / 2;
const alpha = Math.atan2(this.width, this.height);
points.push({
x: this.x - Math.sin(this.angle - alpha) * rad,
y: this.y - Math.cos(this.angle - alpha) * rad,
});
points.push({
x: this.x - Math.sin(this.angle + alpha) * rad,
y: this.y - Math.cos(this.angle + alpha) * rad,
});
points.push({
x: this.x - Math.sin(Math.PI + this.angle - alpha) * rad,
y: this.y - Math.cos(Math.PI + this.angle - alpha) * rad,
});
points.push({
x: this.x - Math.sin(Math.PI + this.angle + alpha) * rad,
y: this.y - Math.cos(Math.PI + this.angle + alpha) * rad,
});
return points;
}
#move() {
// Update speed based on directional input
if (this.controls.forward) {
this.speed += this.acceleration;
}
if (this.controls.backward) {
this.speed -= this.acceleration;
}
// Invert the controls if the car is going backwards
if (this.speed !== 0) {
const flip = this.speed > 0 ? 1 : -1;
if (this.controls.right) {
this.angle -= 0.03 * flip;
}
if (this.controls.left) {
this.angle += 0.03 * flip;
}
}
// Update speed based on friction and also cap it at maxSpeed
switch (true) {
case this.speed > this.maxSpeed:
this.speed = this.maxSpeed;
break;
case (this.speed < -this.maxSpeed / 1.7):
this.speed = -this.maxSpeed / 1.7;
break;
case (this.speed > 0):
this.speed -= this.friction;
break;
case (this.speed < 0):
this.speed += this.friction;
break;
default:
break;
}
// Make sure speed is never smaller than the friction value (causes infinite moving)
if (Math.abs(this.speed) < this.friction) {
this.speed = 0;
}
this.x -= Math.sin(this.angle) * this.speed;
this.y -= Math.cos(this.angle) * this.speed;
}
draw(ctx, color, drawSensors = false) {
if (this.damaged) {
ctx.fillStyle = "gray";
} else {
ctx.fillStyle = color;
}
ctx.beginPath();
ctx.moveTo(this.polygon[0].x, this.polygon[0].y);
for (let i = 1; i < this.polygon.length; i++) {
ctx.lineTo(this.polygon[i].x, this.polygon[i].y);
}
ctx.fill();
if (this.sensor && drawSensors) {
this.sensor.draw(ctx);
}
}
}