Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP

Why Servicestack

Demis Bellot edited this page · 15 revisions

  1. Getting Started

    1. Creating your first project
      1. Create Service from scratch
    2. Your first webservice explained
    3. ServiceStack's new API Design
    4. Designing a REST-ful service with ServiceStack
    5. Example Projects Overview
    6. Learning Resources
  2. Reference

    1. Order of Operations
    2. The IoC container
    3. Configuration and AppSettings
    4. Metadata page
    5. Rest, SOAP & default endpoints
    6. SOAP support
    7. Routing
    8. Service return types
    9. Customize HTTP Responses
    10. Plugins
    11. Validation
    12. Error Handling
    13. Security
    14. Debugging
    15. JavaScript Client Library (ss-utils.js)
  3. Clients

    1. Overview
    2. C#/.NET client
    3. Add ServiceStack Reference
      1. C# Add Reference
      2. F# Add Reference
      3. VB.NET Add Reference
      4. Swift Add Reference
      5. Java Add Reference
    4. Silverlight client
    5. JavaScript client
      1. Add TypeScript Reference
    6. Dart Client
    7. MQ Clients
  4. Formats

    1. Overview
    2. JSON/JSV and XML
    3. ServiceStack's new HTML5 Report Format
    4. ServiceStack's new CSV Format
    5. MessagePack Format
    6. ProtoBuf Format
  5. View Engines

    1. Razor & Markdown Razor
    2. Markdown Razor
  6. Hosts

    1. IIS
    2. Self-hosting
    3. Messaging
    4. Mono
  7. Security

    1. Authentication/authorization
    2. Sessions
    3. Restricting Services
  8. Advanced

    1. Configuration options
    2. Access HTTP specific features in services
    3. Logging
    4. Serialization/deserialization
    5. Request/response filters
    6. Filter attributes
    7. Concurrency Model
    8. Built-in caching options
    9. Built-in profiling
    10. Form Hijacking Prevention
    11. Auto-Mapping
    12. HTTP Utils
    13. Virtual File System
    14. Config API
    15. Physical Project Structure
    16. Modularizing Services
    17. ServiceStack Integration
    18. Embedded Native Desktop Apps
    19. Auto Batched Requests
    20. Versioning
  9. Server Events

    1. Overview
    2. JavaScript Client
    3. C# Server Events Client
    4. Redis Server Events
  10. Encrypted Messaging

    1. Overview
    2. Encrypted Client
  11. Plugins

    1. Auto Query
    2. Server Sent Events
    3. Swagger API
    4. Postman
    5. Request logger
    6. Sitemaps
    7. Cancellable Requests
    8. CorsFeature
  12. Tests

    1. Testing
    2. HowTo write unit/integration tests
  13. ServiceStackVS

    1. Install ServiceStackVS
    2. Add ServiceStack Reference
    3. AngularJS App Template
    4. ReactJS App Template
  14. Other Languages

    1. FSharp
      1. Add ServiceStack Reference
    2. VB.NET
      1. Add ServiceStack Reference
    3. Swift
      1. Swift Add Reference
    4. Java
      1. Add ServiceStack Reference
      2. Android Studio & IntelliJ
      3. Eclipse
  15. Deployment

    1. Deploy Multiple Sites to single AWS Instance
      1. Simple Deployments to AWS with WebDeploy
    2. Advanced Deployments with OctopusDeploy
  16. Install 3rd Party Products

    1. Redis on Windows
    2. RabbitMQ on Windows
  17. Use Cases

    1. Single Page Apps
      1. HTML, CSS and JS Minifiers
    2. Azure
      1. Connecting to Azure Redis via SSL
    3. Logging
    4. Bundling and Minification
    5. NHibernate
  18. Performance

    1. Real world performance
  19. How To

    1. Sending stream to ServiceStack
    2. Setting UserAgent in ServiceStack JsonServiceClient
    3. ServiceStack adding to allowed file extensions
    4. Default web service page how to
  20. Future

    1. Roadmap
Clone this wiki locally

Why ServiceStack?

Developed in the modern age, Service Stack provides an alternate, cleaner POCO-driven way of creating web services.

  • Simplicity
  • Speed
  • Best Practices
  • Model-driven, code-first, friction-free development
  • No XML config, no code-gen, conventional defaults
  • Smart - Infers intelligence from strongly typed DTOs
  • .NET and Mono
  • Highly testable - services are completely decoupled from HTTP
  • Mature - over 5+ years of development
  • Commercially supported and Continually Improved

Features Overview

Define web services following Martin Fowlers Data Transfer Object Pattern with ServiceStack


Service Stack was heavily influenced by Martin Fowlers Data Transfer Object Pattern:

When you're working with a remote interface, such as Remote Facade (388), each call to it is expensive. As a result you need to reduce the number of calls, and that means that you need to transfer more data with each call. One way to do this is to use lots of parameters. However, this is often awkward to program - indeed, it's often impossible with languages such as Java that return only a single value.

The solution is to create a Data Transfer Object that can hold all the data for the call. It needs to be serializable to go across the connection. Usually an assembler is used on the server side to transfer data between the DTO and any domain objects.

The Request- and Response DTO's used to define web services in ServiceStack are standard POCO's while the implementation just needs to inherit from a testable and dependency-free IService<TRequestDto>. As a bonus for keeping your DTO's in a separate dependency-free .dll, you're able to re-use them in your C#/.NET clients providing a strongly-typed API without any code-gen what-so-ever. Also your DTO's define everything Service Stack does not pollute your web services with any additional custom artefacts or markup.

Service Stack re-uses the custom artefacts above and with zero-config and without imposing any extra burden on the developer adds discover-ability and provides hosting of your web service on a number of different physical end-points which as of today includes: XML (+REST), JSON (+REST), JSV (+REST) and SOAP 1.1 / SOAP 1.2.

WCF the anti-DTO Web Services Framework

Unfortunately this best-practices convention is effectively discouraged by Microsoft's WCF SOAP Web Services framework as they encourage you to develop API-specific RPC method calls by mandating the use of method signatures to define your web services API. This results in less re-usable, more client-specific APIs that encourages more remote method calls.

Unhappy with this perceived anti-pattern in WCF, ServiceStack was born providing a Web Sevice framework that embraces best-practices for calling remote services, using config-free, convention-based DTO's.

ServiceStack encourages development of message-style, re-usable and batch-full web services

Entire POCO types are used to define the request- and response DTO's to promote the creation well-defined coarse-grained web services. Message-based interfaces are best-practices when dealing with out-of-process calls as they can batch more work using less network calls and are ultimately more re-usable as the same operation can be called using different calling semantics. This is in stark contrast to WCF's Operation or Service contracts which encourage RPC-style, application-specific web services by using method signatures to define each operation.

As it stands in general-purpose computing today, there is nothing more expensive you can do than a remote network call. Although easier for the newbie developer, by using methods to define web service operations, WCF is promoting bad-practices by encouraging them to design and treat web-service calls like normal function calls even though they are millions of times slower. Especially at the app-server tier, nothing hurts performance and scalability of your client and server than multiple dependent and synchronous web service calls.

Batch-full, message-based web services are ideally suited in development of SOA services as they result in fewer, richer and more re-usable web services that need to be maintained. RPC-style services normally manifest themselves from a client perspective that is the result of the requirements of a single applications data access scenario. Single applications come and go over time while your data and services are poised to hang around for the longer term. Ideally you want to think about the definition of your web service from a services and data perspective and how you can expose your data so it is more re-usable by a number of your clients.

Difference between an RPC-chatty and message-based API

public interface IWcfCustomerService
{
    Customer GetCustomerById(int id);
    List<Customer> GetCustomerByIds(int[] id);
    Customer GetCustomerByUserName(string userName);
    List<Customer> GetCustomerByUserNames(string[] userNames);
    Customer GetCustomerByEmail(string email);
    List<Customer> GetCustomerByEmails(string[] emails);
}

contrast with an equivalent message based service:

public class Customers : IReturn<List<Customer>> 
{
   public int[] Ids { get; set; }
   public string[] UserNames { get; set; }
   public string[] Emails { get; set; }
}

Any combination of the above can be fulfilled by 1 remote call, by the same single web service - i.e what ServiceStack encourages!

Fewer and more batch-full services require less maintenance and promote the development of more re-usable and efficient services. In addition, message APIs are much more resilient to changes as you're able to safely add more functionality or return more data without breaking or needing to re-gen existing clients. Message-based APIs also lend them better for cached, asynchronous, deferred, proxied and reliable execution with the use of brokers and proxies.

Comparatively there is almost no win for a remote RPC API, except to maybe hide a remote service even exists by making a remote call look like a method call even though they're millions of times slower, leading new developers to develop inefficient, brittle systems from the start.

Community Resources

Something went wrong with that request. Please try again.