-
Notifications
You must be signed in to change notification settings - Fork 0
/
segmentation.sh
26 lines (25 loc) · 1.09 KB
/
segmentation.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
for fold in 0 1 2 3 4; #0 1 2 3 4 #solo se tienen 2 clases (original y val) por lo tanto solo se usan 0, 1 fold
do
echo "fold ${fold}"
##Train segmentation model
# python3 -m kuzushiji.segment.main \
# --output-dir _runs/segment-fold${fold} --fold ${fold} \
# --model fasterrcnn_resnet50_fpn #--model fasterrcnn_resnet50_fpn #fasterrcnn_resnet152_fpn
# --pretrained True
# #--model fasterrcnn_resnet152_fpn
# Out-of-fold predictions
# python3 -m kuzushiji.segment.main \
# --output-dir _runs/segment-fold${fold}/imgs --fold ${fold} \
# --model fasterrcnn_resnet50_fpn \
# --resume _runs/segment-fold${fold}/model_best.pth \
# --test-only
# # ##--model fasterrcnn_resnet152_fpn \
# Test predictions
python3 -m kuzushiji.segment.main \
--output-dir _runs/segment-fold${fold}/imgs --fold ${fold} \
--model fasterrcnn_resnet50_fpn \
--resume _runs/segment-fold${fold}/model_best.pth \
--submission
##--model fasterrcnn_resnet152_fpn \
done
#TODO: separar original dataset en train test