-
Notifications
You must be signed in to change notification settings - Fork 2
/
javadoc.json
2693 lines (2693 loc) · 131 KB
/
javadoc.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"com.simiacryptus.mindseye.applications.ArtistryAppBase": {
":class": "The type ArtistryAppBase demo.",
"server": "The Server."
},
"com.simiacryptus.mindseye.applications.ArtistryAppBase_VGG19": {
":class": "The type Artistry app base vgg 19."
},
"com.simiacryptus.mindseye.applications.ArtistryUtil": {
":class": "The type Artistry util."
},
"com.simiacryptus.mindseye.applications.DeepDreamBase": {
":class": "This notebook implements the Style Transfer protocol outlined in <a href=\"https://arxiv.org/abs/1508.06576\">A Neural Algorithm of Artistic Style</a>",
"tiled": "Sets tiled."
},
"com.simiacryptus.mindseye.applications.DeepDreamBase.ContentCoefficients": {
":class": "The type Content coefficients."
},
"com.simiacryptus.mindseye.applications.DeepDreamBase.ContentTarget": {
":class": "The type Content target.",
"content": "The Content."
},
"com.simiacryptus.mindseye.applications.DeepDreamBase.NeuralSetup": {
":class": "The type Neural setup.",
"contentTarget": "The Content target."
},
"com.simiacryptus.mindseye.applications.DeepDreamBase.StyleSetup": {
":class": "The type Style setup."
},
"com.simiacryptus.mindseye.applications.DeepDreamBase.VGG16": {
":class": "The type Vgg 16."
},
"com.simiacryptus.mindseye.applications.DeepDreamBase.VGG19": {
":class": "The type Vgg 19."
},
"com.simiacryptus.mindseye.applications.ImageClassificationBase": {
":class": "The type Image classification base."
},
"com.simiacryptus.mindseye.applications.ImageClassifierBase": {
":class": "The type Image classifier.",
"batchSize": "Sets batch size.",
"cachedLayer": "The Network.",
"cnt": "The Cnt.",
"precision": "Sets precision.",
"prototype": "The Prototype."
},
"com.simiacryptus.mindseye.applications.ObjectLocationBase": {
":class": "The type Object location."
},
"com.simiacryptus.mindseye.applications.ObjectLocationBase.VGG16": {
":class": "The type Vgg 16."
},
"com.simiacryptus.mindseye.applications.ObjectLocationBase.VGG19": {
":class": "The type Vgg 19."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase": {
":class": "This notebook implements the Style Transfer protocol outlined in <a href=\"https://arxiv.org/abs/1508.06576\">A Neural Algorithm of Artistic Style</a>",
"parallelLossFunctions": "The Parallel loss functions."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.ContentCoefficients": {
":class": "The type Content coefficients."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.ContentTarget": {
":class": "The type Content target.",
"content": "The Content."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.LayerStyleParams": {
":class": "The type Layer style params."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.NeuralSetup": {
":class": "The type Neural setup.",
"contentTarget": "The Content target.",
"styleTargets": "The Style targets."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.StyleCoefficients": {
":class": "The type Style coefficients."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.StyleSetup": {
":class": "The type Style setup.",
"contentImage": "The Content image."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.StyleTarget": {
":class": "The type Style target.",
"cov0": "The Cov.",
"cov1": "The Cov.",
"mean": "The Mean."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.VGG16": {
":class": "The type Vgg 16."
},
"com.simiacryptus.mindseye.applications.StyleTransferBase.VGG19": {
":class": "The type Vgg 19."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase": {
":class": "This notebook implements the Style Transfer protocol outlined in <a href=\"https://arxiv.org/abs/1508.06576\">A Neural Algorithm of Artistic Style</a>",
"parallelLossFunctions": "The Parallel loss functions.",
"tiled": "Sets tiled."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.ContentCoefficients": {
":class": "The type Content coefficients."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.ContentTarget": {
":class": "The type Content target.",
"content": "The Content."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.LayerStyleParams": {
":class": "The type Layer style params."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.NeuralSetup": {
":class": "The type Neural setup.",
"contentTarget": "The Content target.",
"styleTargets": "The Style targets."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.StyleCoefficients": {
":class": "The type Style coefficients."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.StyleSetup": {
":class": "The type Style setup."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.StyleTarget": {
":class": "The type Style target.",
"cov0": "The Cov.",
"cov1": "The Cov.",
"mean": "The Mean."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.VGG16": {
":class": "The type Vgg 16."
},
"com.simiacryptus.mindseye.applications.TextureGenerationBase.VGG19": {
":class": "The type Vgg 19."
},
"com.simiacryptus.mindseye.applications.dev.vgg19.ArtisticGradient": {
":class": "The type Style transfer vgg 19."
},
"com.simiacryptus.mindseye.applications.dev.vgg19.DreamIndex": {
":class": "The type Style transfer vgg 19."
},
"com.simiacryptus.mindseye.applications.dev.vgg19.TextureDream": {
":class": "The type Style transfer vgg 19."
},
"com.simiacryptus.mindseye.applications.std.vgg19.DeepDream": {
":class": "The type Deep dream vgg 19."
},
"com.simiacryptus.mindseye.applications.std.vgg19.ImageClassification": {
":class": "We load a pretrained convolutional neural network (VGG16) along apply the CalTech101 image dataset to perform a demonstration of Image Recognition."
},
"com.simiacryptus.mindseye.applications.std.vgg19.ImageClassification.HFD5": {
":class": "The type HDF5_JBLAS."
},
"com.simiacryptus.mindseye.applications.std.vgg19.ObjectLocation": {
":class": "The type Image classifier apply base."
},
"com.simiacryptus.mindseye.applications.std.vgg19.StyleTransfer": {
":class": "The type Style transfer vgg 19."
},
"com.simiacryptus.mindseye.applications.std.vgg19.TextureGeneration": {
":class": "The type Style transfer vgg 19."
},
"com.simiacryptus.mindseye.eval.ArrayTrainable": {
":class": "Basic training component which evaluates a static array of data on a network. Evaluation is subject to batch-size conditions to manage execution memory requirements.",
"trainingData": "Sets training data."
},
"com.simiacryptus.mindseye.eval.BasicTrainable": {
":class": "This class handles dispatching network evaluations, and distributing the evaluations to the system GPU(s). This is the main class the handles actual execution for training purposes.",
"data": "The Data.",
"mask": "The Mask.",
"verbosity": "Sets verbose."
},
"com.simiacryptus.mindseye.eval.BatchedTrainable": {
":class": "Base class to manage batched execution, where a data setByCoord is executed in segments in order to manage execution memory requirements.",
"verbose": "Sets verbose."
},
"com.simiacryptus.mindseye.eval.CachedTrainable": {
":class": "A wrapper which maintains a hisotry of N prior evaluations. If a detectable repeated evaluation is requested, the cached result is used.",
"historySize": "Sets history size.",
"verbose": "Sets verbose."
},
"com.simiacryptus.mindseye.eval.ConstL12Normalizer": {
":class": "This Trainable wrapper adds additional L1 and L2 terms for weight normalization. Both coefficients are universal for the network (does not depend on layer) and are setByCoord statically.",
"factor_L1": "Sets factor l 1.",
"factor_L2": "Sets factor l 2."
},
"com.simiacryptus.mindseye.eval.DataTrainable": {
":class": "A base class for Trainable objects advertizing an API for setting and accessing the training data.",
"data": "Sets data."
},
"com.simiacryptus.mindseye.eval.L12Normalizer": {
":class": "Abstract base class for a trainable wrapper that adds per-layer L1 and L2 normalization constants. It allows the implementing class to choose the coefficients for each layer."
},
"com.simiacryptus.mindseye.eval.LocalSparkTrainable": {
":class": "A debugging class which replaces SparkTrainable apply an implementation that uses direct method calls instead of RMI. This can be useful for debugging in some situations."
},
"com.simiacryptus.mindseye.eval.SampledArrayTrainable": {
":class": "This type handles the data selection part of stochastic gradient descent training. Between each epoch, a \"reset\" method is called to re-sample the training data and pass it to the heapCopy Trainable implementation.",
"minSamples": "Sets min samples."
},
"com.simiacryptus.mindseye.eval.SampledCachedTrainable": {
":class": "A type-merging class for Trainable objects which are both Sampled and Cached."
},
"com.simiacryptus.mindseye.eval.SampledTrainable": {
":class": "A trainable contract for variable sample size; smaller values result in faster but less representative evaluations.",
"trainingSize": "Sets training size."
},
"com.simiacryptus.mindseye.eval.SparkTrainable": {
":class": "A training implementation which holds data as a Spark RDD and distributes network evaluation over the partitions.",
"partitions": "Sets partitions.",
"sampledRDD": "The Sampled rdd.",
"storageLevel": "Sets storage level.",
"verbose": "Sets verbose."
},
"com.simiacryptus.mindseye.eval.SparkTrainable.PartitionTask": {
":class": "The type Partition task.",
"verbose": "The Verbose."
},
"com.simiacryptus.mindseye.eval.SparkTrainable.ReducableResult": {
":class": "The type Reducable result."
},
"com.simiacryptus.mindseye.eval.TensorListTrainable": {
":class": "This class handles dispatching network evaluations, and distributing the evaluations to the system GPU(s). This is the main class the handles actual execution for training purposes.",
"data": "Sets data.",
"mask": "The Mask.",
"verbosity": "Sets verbose."
},
"com.simiacryptus.mindseye.eval.Trainable": {
":class": "Base class for an object which can be evaluated using differential weights. This represents a function without inputs and apply only one output. The internal weights, effectively the function's input, are adjusted to minimize this output."
},
"com.simiacryptus.mindseye.eval.TrainableBase": {
":class": "Base class for an object which can be evaluated using differential weights. This represents a function without inputs and apply only one output. The internal weights, effectively the function's input, are adjusted to minimize this output."
},
"com.simiacryptus.mindseye.eval.TrainableDataMask": {
":class": "A Trainable supplemental contract exposing a boolean mask which configures which, if any, input columns are to be adjusted by the learning procedure. This can be used to trainCjGD per-row, non-shared parameters.",
"mask": "Sets mask."
},
"com.simiacryptus.mindseye.eval.TrainableWrapper": {
":class": "A base class for a Trainable type which wraps an heapCopy type of the same kind."
},
"com.simiacryptus.mindseye.labs.encoding.EncodingUtil": {
":class": "The type Image encoding util."
},
"com.simiacryptus.mindseye.labs.encoding.EncodingUtil.ConvolutionExtractor": {
"column": "The Column.",
"image": "The Image.",
"x": "The X.",
"y": "The Y."
},
"com.simiacryptus.mindseye.labs.encoding.FindFeatureSpace": {
":class": "The type Find feature space.",
"averages": "The Averages.",
"vectors": "The Vectors."
},
"com.simiacryptus.mindseye.labs.encoding.FindPCAFeatures": {
":class": "The type Find feature space."
},
"com.simiacryptus.mindseye.labs.encoding.ImageDecompositionLab": {
":class": "The type Image encoding pca apply.",
"dataPipeline": "The MnistProblemData pipeline.",
"displayImage": "The Display image.",
"modelNo": "The Model no."
},
"com.simiacryptus.mindseye.labs.encoding.ImageDecompositionLab.AddLayerStep": {
":class": "The type Add layer runStep."
},
"com.simiacryptus.mindseye.labs.encoding.ImageDecompositionLab.InitializationStep": {
":class": "The type Initialization runStep."
},
"com.simiacryptus.mindseye.labs.encoding.ImageDecompositionLab.TranscodeStep": {
":class": "The type Transcode runStep."
},
"com.simiacryptus.mindseye.labs.matrix.AllTrainingTests": {
":class": "The type All training tests.",
"batchSize": "The Batch size.",
"timeoutMinutes": "The Timeout minutes."
},
"com.simiacryptus.mindseye.labs.matrix.CaltechTests": {
":class": "The type Mnist apply base."
},
"com.simiacryptus.mindseye.labs.matrix.CaltechTests.All_Caltech_Tests": {
":class": "Basic demonstratin problems involving the Caltech101 image dataset."
},
"com.simiacryptus.mindseye.labs.matrix.CaltechTests.QQN": {
":class": "Basic demonstration problems involving the Caltech101 image dataset and Quadratic Quasi-Newton optimizer"
},
"com.simiacryptus.mindseye.labs.matrix.CifarTests": {
":class": "The type Mnist apply base."
},
"com.simiacryptus.mindseye.labs.matrix.CifarTests.All_CIFAR_Tests": {
":class": "The type All cifar tests."
},
"com.simiacryptus.mindseye.labs.matrix.CifarTests.OWL_QN": {
":class": "Owls are deadly and silent forest raptors. HOOT! HOOT!"
},
"com.simiacryptus.mindseye.labs.matrix.CifarTests.QQN": {
":class": "Quadratic Quasi-Newton optimization applied to basic problems apply the CIFAR10 image dataset."
},
"com.simiacryptus.mindseye.labs.matrix.CifarTests.SGD": {
":class": "Classic Stochastic Gradient Descent optimization applied to basic problems apply the CIFAR10 image dataset."
},
"com.simiacryptus.mindseye.labs.matrix.MnistTests": {
":class": "The type Mnist apply base."
},
"com.simiacryptus.mindseye.labs.matrix.MnistTests.All_MNIST_Tests": {
":class": "The type All mnist tests."
},
"com.simiacryptus.mindseye.labs.matrix.MnistTests.OWL_QN": {
":class": "Owls are to be respected and feared. HOOT!"
},
"com.simiacryptus.mindseye.labs.matrix.MnistTests.QQN": {
":class": "Quadraic Quasi-Newton handwriting recognition."
},
"com.simiacryptus.mindseye.labs.matrix.MnistTests.SGD": {
":class": "Stochastic Gradient Descent applied to Handwriting Recognition!"
},
"com.simiacryptus.mindseye.labs.matrix.OptimizerComparison": {
":class": "The type Optimizer comparison.",
"data": "The Data.",
"fwdFactory": "The Fwd factory.",
"revFactory": "The Rev factory.",
"timeoutMinutes": "Sets timeout minutes."
},
"com.simiacryptus.mindseye.labs.matrix.Research": {
":class": "We compare some traditional baseline optimizers against proprietary MindsEye optimization components."
},
"com.simiacryptus.mindseye.labs.matrix.TextbookOptimizers": {
":class": "We compare a variety of conventional \"textbook\" optimizer configurations against a standard optimization benchmarking suite."
},
"com.simiacryptus.mindseye.lang.ComponentException": {
":class": "An exception occured within a LayerBase component. This is most often due to invalid input or configuration."
},
"com.simiacryptus.mindseye.lang.ConstantResult": {
":class": "A special type of Result which ignores backpropigation; it has a constant value."
},
"com.simiacryptus.mindseye.lang.Coordinate": {
":class": "A data structure to represent an index/coordinate/tuple for referencing elements in a Tensor. It contains both the physical (1-d) and logical (N-d) indicies of the element.",
"coords": "Sets coords.",
"index": "Sets index."
},
"com.simiacryptus.mindseye.lang.CoreSettings": {
":class": "The type Cuda settings."
},
"com.simiacryptus.mindseye.lang.DataSerializer": {
":class": "Provides a data serialization interface designed for converting arrays of doubles to/from arrays of bytes. Implementations may use reduced precision and other lossy compression techniques."
},
"com.simiacryptus.mindseye.lang.DataSerializerTest": {
":class": "The type Tensor apply."
},
"com.simiacryptus.mindseye.lang.Delta": {
":class": "An arithmetic delta being staged to effect an in-memory change to a double[] array. In comparison apply the State class via geometric analogy, this would be a vector whereas State is a point.",
"deltaCompensation": "The Delta compensation."
},
"com.simiacryptus.mindseye.lang.DeltaSet": {
":class": "This is a collection of Deltas being staged for particular layers. Provides indexing capabilities to reference the deltas based on physical references (to double[] objects) and based on logical referants (i.e. layers) Provides collection-arithmetic operations appropriate to the Delta's vector geometric archtype."
},
"com.simiacryptus.mindseye.lang.DoubleArrayStatsFacade": {
":class": "A stateless wrapper class that provides accessors for statistical metrics of a given scalar array."
},
"com.simiacryptus.mindseye.lang.DoubleBuffer": {
":class": "A generic alternate memory buffer being staged in relation to an existing double[] array.",
"delta": "The Delta."
},
"com.simiacryptus.mindseye.lang.DoubleBufferSet": {
":class": "A collection of DoubleBuffer objects being staged for particular layers. Provides indexing capabilities to reference the deltas based on physical references (to double[] objects) and based on logical referants (i.e. layers)"
},
"com.simiacryptus.mindseye.lang.DoubleBufferSet.Delegate": {
":class": "The type Delegate."
},
"com.simiacryptus.mindseye.lang.IterativeStopException": {
":class": "Used to communicate that an iterative learning process should be terminated gracefully."
},
"com.simiacryptus.mindseye.lang.Layer": {
":class": "The interface Layer.",
"frozen": "Sets frozen.",
"name": "Sets name."
},
"com.simiacryptus.mindseye.lang.LayerBase": {
":class": "The basic type of Neural Network LayerBase supporting the backpropigation model of learning. In general, these components define differentiable functions and the accompanying derivatives. The interface is designed to support composability; see DAGNetwork for composition details.",
"frozen": "Sets frozen.",
"name": "Sets name."
},
"com.simiacryptus.mindseye.lang.LifecycleException": {
":class": "A runtime exception when performing an invalid operation on a ReferenceCounted object."
},
"com.simiacryptus.mindseye.lang.MutableResult": {
":class": "The type Mutable result."
},
"com.simiacryptus.mindseye.lang.PointSample": {
":class": "Represents an evaluation record used during optimization of a function apply one scalar output and many inputs. We track both a record of the network's state, and a record of the gradient evaluated at that point.",
"rate": "Sets rate."
},
"com.simiacryptus.mindseye.lang.RecycleBin": {
":class": "This is a recycling mechanism to reuse short-term-lifecycle T objects of regular length. It is a convenience mechanism to optimize tight loops which would otherwise require careful and complex coding to minimize allocations and avoid excessive GC load",
"maxItemsPerBuffer": "Sets max items per buffer.",
"maxLengthPerBuffer": "Sets max bytes per buffer.",
"minLengthPerBuffer": "Sets min bytes per buffer.",
"persistanceMode": "Sets persistance mode.",
"profiling": "Sets profiling.",
"purgeFreq": "Sets purge freq."
},
"com.simiacryptus.mindseye.lang.RecycleBin.ObjectWrapper": {},
"com.simiacryptus.mindseye.lang.ReferenceCounting": {
":class": "Interface for objects apply reference counting. Reference counted objects will be freed when the last reference is freed, in a guaranteed-once-only manner. In general, valid reference counting behavior can be maintained by observing a few rules: 1) References should be freed as soon as they are finished being used 2) Only reference counting objects should be used to hold pointers to other reference counting objects, and those pointers should be freed and clears when the object is freed. 3) If returning a reference to an object from a method, increment its reference count. 4) Handle reference counted objects within the scope of a single method when possible. (i.e. prefer to keep them on the stack, not heap.)"
},
"com.simiacryptus.mindseye.lang.ReferenceCountingBase": {
":class": "The base implementation for ReferenceCounting objects. Provides state management and debugging facilities. If assertions are enabled, stack traces are recorded to provide detailed logs for debugging LifecycleExceptions."
},
"com.simiacryptus.mindseye.lang.ReferenceWrapper": {
":class": "The type Reference wrapper."
},
"com.simiacryptus.mindseye.lang.RegisteredObjectBase": {
":class": "The type Registered object base."
},
"com.simiacryptus.mindseye.lang.RegisteredObjectBase.ObjectRecords": {},
"com.simiacryptus.mindseye.lang.ReshapedTensorList": {
":class": "A wrapper TensorList data to override the existing tensor layer. Can be used for example to flatten or unflatten a tensor to/from a rank-1 array."
},
"com.simiacryptus.mindseye.lang.Result": {
":class": "Encapsulates the results of evaluating neural network. It includes both the result data and a function which can be evaluated to determine the learning gradient. Does not hold a reference on the result data object, allowing that data to be freed when possible while preserving the gradient callback."
},
"com.simiacryptus.mindseye.lang.SerialPrecision.Rational": {
":class": "The type Rational."
},
"com.simiacryptus.mindseye.lang.Settings": {
":class": "The type Settings.",
"logger": "The constant logger."
},
"com.simiacryptus.mindseye.lang.Singleton": {
":class": "An asynchronous, settable reference buffer. Allows consumers to block until a value is availble."
},
"com.simiacryptus.mindseye.lang.StackCounter": {
":class": "A diagnostics tool that accumulates weighted stack trace statistics. Can be used to track hot spots in code related to custom variable-intensity events.",
"stats": "The Stats."
},
"com.simiacryptus.mindseye.lang.StackCounter.StackFrame": {
":class": "The type Stack frame."
},
"com.simiacryptus.mindseye.lang.State": {
":class": "Alternate version being staged to effect an in-memory change to a double[] array. In comparison apply the Delta class via geometric analogy, this would be a point whereas Delta is a vector."
},
"com.simiacryptus.mindseye.lang.StateSet": {
":class": "A collection of State objects being staged for particular layers. Provides indexing capabilities to reference the deltas based on physical references (to double[] objects) and based on logical referants (i.e. layers) Provides collection-arithmetic operations appropriate to the State's 'point' geometric archtype."
},
"com.simiacryptus.mindseye.lang.Tensor": {
":class": "A multi-dimensional array of data. Represented internally as a single double[] array. This class is central to data handling in MindsEye, and may have some odd-looking or suprising optimizations.",
"all": "Sets all.",
"byCoord": "Fill by coord tensor.",
"bytes": "Sets bytes.",
"data": "The Data.",
"parallelByIndex": "Sets parallel by index."
},
"com.simiacryptus.mindseye.lang.Tensor.CoordOperator": {
":class": "The interface Coord operator."
},
"com.simiacryptus.mindseye.lang.Tensor.TupleOperator": {
":class": "The interface Tuple operator."
},
"com.simiacryptus.mindseye.lang.TensorArray": {
":class": "An on-heap implementation of the TensorList data container."
},
"com.simiacryptus.mindseye.lang.TensorList": {
":class": "This abstract data container is used to pass data between LayerBase components. It potentially represents data stored off-heap, such as on a particular GPU. Use of this abstract class allows optimizations where adjacent GPU components can operate apply minimal CPU-GPU data transfer."
},
"com.simiacryptus.mindseye.lang.TensorTest": {
":class": "The type Tensor apply."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaDevice": {
":class": "The type Gpu device."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaDevice.CudaTensorDescriptor": {
":class": "The type Cuda tensor descriptor."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaError": {
":class": "A low-level exception occured while executing GPU instructions"
},
"com.simiacryptus.mindseye.lang.cudnn.CudaMemory": {
":class": "A GPU memory segment"
},
"com.simiacryptus.mindseye.lang.cudnn.CudaPointer": {
":class": "The type Cuda pointer."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaResource": {
":class": "A managed resource containing a native CudaSystem resource, bound to its lifecycle apply a prearranged destructor."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaResourceBase": {
":class": "The type Cuda resource base.",
"ptr": "The Ptr."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaSettings": {
":class": "The type Cuda settings."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaStream": {
":class": "The type Cuda stream."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaSystem": {
":class": "Main library wrapper class around the CudaSystem API, providing logging and managed wrappers."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaSystem.CudaDeviceResource": {
":class": "The interface Cuda device resource."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaTensor": {
":class": "The type Cuda tensor."
},
"com.simiacryptus.mindseye.lang.cudnn.CudaTensorList": {
":class": "A TensorList data object stored on a GPU apply a configurable precision.",
"gpuCopy": "The Ptr.",
"heapCopy": "The Heap copy."
},
"com.simiacryptus.mindseye.lang.cudnn.CudnnHandle": {
":class": "The type Gpu handle."
},
"com.simiacryptus.mindseye.lang.cudnn.CudnnTest": {
":class": "The type Cudnn layer apply base."
},
"com.simiacryptus.mindseye.lang.cudnn.DeviceMetrics": {
":class": "The type Gpu stats."
},
"com.simiacryptus.mindseye.lang.cudnn.MultiPrecision": {
":class": "An interface for CuDNN layers apply configurable numeric precision.",
"precision": "Sets precision."
},
"com.simiacryptus.mindseye.layers.Explodable": {
":class": "An (LayerBase) object which can be exploded into an equivalent network apply more fine-grained components."
},
"com.simiacryptus.mindseye.layers.LayerTestBase": {
":class": "The type LayerBase apply base."
},
"com.simiacryptus.mindseye.layers.MetaLayerTestBase": {
":class": "The type Meta layer apply base."
},
"com.simiacryptus.mindseye.layers.StochasticComponent": {
":class": "A parent interface for layers which should be \"shuffled\" often, generally when the layer has some random noise-determining state. This is needed since even noise-introducing layers must behave well as analytic functions between shuffles to guarantee the optimizer will converge.",
"random": "The constant randomize."
},
"com.simiacryptus.mindseye.layers.aparapi.AparapiTest": {
":class": "The type Aparapi apply."
},
"com.simiacryptus.mindseye.layers.aparapi.AparapiTest.Convolution": {
":class": "The interface Convolution."
},
"com.simiacryptus.mindseye.layers.aparapi.AparapiTest.TestKernel": {
":class": "The type Test kernel."
},
"com.simiacryptus.mindseye.layers.aparapi.BackpropKernel": {
":class": "The type Backprop kernel.",
"input": "The Input.",
"inputSize": "The Input size.",
"kernelOffset": "The Kernel offset.",
"kernelSize": "The Kernel size.",
"output": "The Output.",
"outputSize": "The Output size.",
"weights": "The Weights."
},
"com.simiacryptus.mindseye.layers.aparapi.ConvolutionController": {
":class": "The type Convolution controller.",
"paddingX": "Sets padding x.",
"paddingY": "Sets padding y."
},
"com.simiacryptus.mindseye.layers.aparapi.ConvolutionLayer": {
":class": "This convolution layer is often used as the reference implementation for other convolution implementation. It uses OpenCL via Aparapi to compile Java into GPU-accellerated kernels. Due to its simple implementation and limitations of Aparapi, it is not as fast as CudaSystem-powered layers.",
"paddingX": "Sets padding x.",
"paddingY": "Sets padding y.",
"weights": "Sets weights."
},
"com.simiacryptus.mindseye.layers.aparapi.ConvolutionLayerTest": {
":class": "The type Convolution layer apply."
},
"com.simiacryptus.mindseye.layers.aparapi.ConvolutionLayerTest.Basic": {
":class": "Basic 3x3 convolution apply 2 color bands"
},
"com.simiacryptus.mindseye.layers.aparapi.ConvolutionLayerTest.Downsize": {
":class": "Reducing the number of bands (output less data than input)"
},
"com.simiacryptus.mindseye.layers.aparapi.ConvolutionLayerTest.Upsize": {
":class": "Increasing the number of bands (output more data than input)"
},
"com.simiacryptus.mindseye.layers.aparapi.ConvolveKernel": {
":class": "The type Convolve kernel.",
"input": "The Input.",
"inputSize": "The Input size.",
"kernelOffset": "The Kernel offset.",
"kernelSize": "The Kernel size.",
"output": "The Output.",
"outputSize": "The Output size.",
"weights": "The Weights."
},
"com.simiacryptus.mindseye.layers.aparapi.GradientKernel": {
":class": "The type Gradient kernel.",
"input": "The Input.",
"inputSize": "The Input size.",
"kernelOffset": "The Kernel offset.",
"kernelSize": "The Kernel size.",
"output": "The Output.",
"outputSize": "The Output size.",
"paralellism": "The Paralellism.",
"weightSize": "The Weight size.",
"weights": "The Weights."
},
"com.simiacryptus.mindseye.layers.aparapi.OpenCL": {
":class": "The type Open cl."
},
"com.simiacryptus.mindseye.layers.cudnn.ActivationLayer": {
":class": "The generic Activation layer, exposing the activation types provided by CudaSystem. This layer is stateless and is determined by a univariate function, e.g. ReLU or Sigmoid."
},
"com.simiacryptus.mindseye.layers.cudnn.ActivationLayerTest": {
":class": "The type Activation layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ActivationLayerTest.ReLu_Double": {
":class": "Configured apply double (64-bit) precision, y=x<0?0:x"
},
"com.simiacryptus.mindseye.layers.cudnn.ActivationLayerTest.ReLu_Float": {
":class": "Configured apply float (32-bit) precision, y=x<0?0:x"
},
"com.simiacryptus.mindseye.layers.cudnn.ActivationLayerTest.Sigmoid_Double": {
":class": "Configured apply double (64-bit) precision using the Sigmoid function"
},
"com.simiacryptus.mindseye.layers.cudnn.ActivationLayerTest.Sigmoid_Float": {
":class": "Configured apply float (32-bit) precision using the Sigmoid function"
},
"com.simiacryptus.mindseye.layers.cudnn.AvgReducerLayer": {
":class": "Similar to the pooling layer, but the pool size is always the image size. The output dimensions are always 1x1xN."
},
"com.simiacryptus.mindseye.layers.cudnn.AvgReducerLayerTest": {
":class": "The type Img band bias layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.AvgReducerLayerTest.Asymmetric": {
":class": "Inputs asymmetric (height != width) images"
},
"com.simiacryptus.mindseye.layers.cudnn.AvgReducerLayerTest.Double": {
":class": "Basic apply in double (64-bit) precision"
},
"com.simiacryptus.mindseye.layers.cudnn.AvgReducerLayerTest.Float": {
":class": "Basic apply using float (32-bit) precision."
},
"com.simiacryptus.mindseye.layers.cudnn.BandAvgReducerLayer": {
":class": "Similar to the pooling layer, but the pool size is always the image size. The output dimensions are always 1x1xN.",
"alpha": "Sets alpha."
},
"com.simiacryptus.mindseye.layers.cudnn.BandAvgReducerLayerTest": {
":class": "The type Img band bias layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.BandAvgReducerLayerTest.Asymmetric": {
":class": "Inputs asymmetric (height != width) images"
},
"com.simiacryptus.mindseye.layers.cudnn.BandAvgReducerLayerTest.Double": {
":class": "Basic apply in double (64-bit) precision"
},
"com.simiacryptus.mindseye.layers.cudnn.BandAvgReducerLayerTest.Float": {
":class": "Basic apply using float (32-bit) precision."
},
"com.simiacryptus.mindseye.layers.cudnn.BandAvgReducerLayerTest.Negative": {
":class": "Basic apply in double (64-bit) precision"
},
"com.simiacryptus.mindseye.layers.cudnn.BandReducerLayer": {
":class": "Similar to the pooling layer, but the pool size is always the image size. The output dimensions are always 1x1xN.",
"alpha": "Sets alpha.",
"mode": "Sets mode."
},
"com.simiacryptus.mindseye.layers.cudnn.BandReducerLayerTest": {
":class": "The type Img band bias layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.BandReducerLayerTest.Asymmetric": {
":class": "Inputs asymmetric (height != width) images"
},
"com.simiacryptus.mindseye.layers.cudnn.BandReducerLayerTest.Double": {
":class": "Basic apply in double (64-bit) precision"
},
"com.simiacryptus.mindseye.layers.cudnn.BandReducerLayerTest.Float": {
":class": "Basic apply using float (32-bit) precision."
},
"com.simiacryptus.mindseye.layers.cudnn.BandReducerLayerTest.Negative": {
":class": "Basic apply in double (64-bit) precision"
},
"com.simiacryptus.mindseye.layers.cudnn.BinarySumLayer": {
":class": "Computes a weighted binary sum of two layers. Provides two weighting coefficients, one for each input. This can be used to implement a summation layer, a difference layer, a scaling layer, or any combination.",
"leftFactor": "Sets left factor.",
"rightFactor": "Sets right factor."
},
"com.simiacryptus.mindseye.layers.cudnn.BinarySumLayerTest": {
":class": "The type BinarySumLayerTest layer apply.",
"smallSize": "The Small size."
},
"com.simiacryptus.mindseye.layers.cudnn.BinarySumLayerTest.Double_Add": {
":class": "Adds using double (64-bit) precision, C = A + B"
},
"com.simiacryptus.mindseye.layers.cudnn.BinarySumLayerTest.Double_List": {
":class": "The type Double list."
},
"com.simiacryptus.mindseye.layers.cudnn.BinarySumLayerTest.Double_Subtract": {
":class": "Subtracts using double (64-bit) precision, C = A - B"
},
"com.simiacryptus.mindseye.layers.cudnn.BinarySumLayerTest.Float_Add": {
":class": "Adds using float (32-bit) precision, C = A + B"
},
"com.simiacryptus.mindseye.layers.cudnn.BinarySumLayerTest.Float_Avg": {
":class": "Binary averaging using float (32-bit) precision, C = (A + B) / 2"
},
"com.simiacryptus.mindseye.layers.cudnn.BinarySumLayerTest.OnePlusOne": {
":class": "Ensures addition can be used to implement a doubling (x2) function"
},
"com.simiacryptus.mindseye.layers.cudnn.CudaLayerTestBase": {
":class": "The type Cudnn layer apply base."
},
"com.simiacryptus.mindseye.layers.cudnn.GateBiasLayer": {
":class": "This layer multiplies together the inputs, element-by-element. It can be used to implement integer-power activation layers, such as the square needed in MeanSqLossLayer."
},
"com.simiacryptus.mindseye.layers.cudnn.GateBiasLayerTest": {
":class": "The type Product layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.GateBiasLayerTest.Double": {
":class": "Multiplication of 2 inputs using 64-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.GateBiasLayerTest.Float": {
":class": "Multiplication of 2 inputs using 32-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.GramianLayer": {
":class": "A dense matrix operator using vector-matrix multiplication. Represents a fully connected layer of synapses, where all inputs are connected to all outputs via seperate coefficients.",
"alpha": "Sets alpha."
},
"com.simiacryptus.mindseye.layers.cudnn.GramianLayerTest": {
":class": "The type Fully connected layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.GramianLayerTest.Deep": {
":class": "The type Deep."
},
"com.simiacryptus.mindseye.layers.cudnn.GramianLayerTest.Image": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgBandBiasLayer": {
":class": "This layer multiplies together the inputs, element-by-element. It can be used to implement integer-power activation layers, such as the square needed in MeanSqLossLayer.",
"andFree": "Sets and free.",
"bias": "Sets bias.",
"weights": "Add weights img band bias layer.",
"weightsLog": "Sets weights log."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgBandBiasLayerTest": {
":class": "The type Img band bias layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgBandBiasLayerTest.Double": {
":class": "Basic 64-bit apply"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgBandBiasLayerTest.Float": {
":class": "Basic 32-bit apply"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgBandSelectLayer": {
":class": "Concatenates two or more inputs, assuming they have the same width and height, to produce an image apply both inputs' color bands. (e.g. Used in Inception modules in GoogLeNet.)",
"from": "Sets max bands.",
"to": "Sets to."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgBandSelectLayerTest": {
":class": "The type Img concat layer apply.",
"inputBands": "The Input bands.",
"layer": "The LayerBase."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgBandSelectLayerTest.Double": {
":class": "Basic 64-bit apply"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgBandSelectLayerTest.Float": {
":class": "Basic 32-bit apply"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgConcatLayer": {
":class": "Concatenates two or more inputs, assuming they have the same width and height, to produce an image apply both inputs' color bands. (e.g. Used in Inception modules in GoogLeNet.)",
"maxBands": "Sets max bands.",
"parallel": "Sets parallel."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgConcatLayerTest": {
":class": "The type Img concat layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgConcatLayerTest.BandConcatLimitTest": {
":class": "Test truncation feature that both concatenates images and limits the image to N bands, discarding the last as needed."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgConcatLayerTest.BandLimitTest": {
":class": "Test truncation feature that limits the image to N bands, discarding the last as needed."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgConcatLayerTest.Big": {
":class": "The type BigTests."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgConcatLayerTest.Double": {
":class": "Basic 64-bit apply"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgConcatLayerTest.Float": {
":class": "Basic 32-bit apply"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgCropLayer": {
":class": "Reduces the resolution of the input by selecting a centered window. The output image will have the same number of color bands."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgCropLayerTest": {
":class": "The type Img crop layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgCropLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgCropLayerTest.Chained": {
":class": "The type Chained."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgLinearSubnetLayer": {
":class": "This layer works as a scaling function, similar to a father wavelet. Allows convolutional and pooling layers to work across larger image regions.",
"parallel": "Sets parallel."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgLinearSubnetLayer.SubnetLeg": {
":class": "The type Subnet leg."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgLinearSubnetLayerTest": {
":class": "The type Rascaled subnet layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgLinearSubnetLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgMinSizeLayer": {
":class": "Increases the resolution of the input by selecting a larger centered window. The output image will have the same number of color bands, and the area outside the source image will be setWeights to 0."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgModulusPaddingLayer": {
":class": "Increases the resolution of the input by selecting a larger centered window. The output image will have the same number of color bands, and the area outside the source image will be setWeights to 0.",
"offsetX": "Sets offset x."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgModulusPaddingLayerTest": {
":class": "The type Img crop layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgModulusPaddingLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileAssemblyLayer": {
":class": "Reduces the resolution of the input by selecting a centered window. The output image will have the same number of color bands.",
"parallel": "Sets parallel."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileAssemblyLayer.BackpropParams": {},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileAssemblyLayer.CopyParams": {},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileAssemblyLayerTest": {
":class": "The type Img crop layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileAssemblyLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileCycleLayer": {
":class": "Reduces the resolution of the input by selecting a centered window. The output image will have the same number of color bands."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileCycleLayerTest": {
":class": "The type Img crop layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileCycleLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileCycleLayerTest.Chained": {
":class": "The type Chained."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileSelectLayer": {
":class": "Reduces the resolution of the input by selecting a centered window. The output image will have the same number of color bands."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileSelectLayerTest": {
":class": "The type Img crop layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileSelectLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileSubnetLayer": {
":class": "This layer works as a scaling function, similar to a father wavelet. Allows convolutional and pooling layers to work across larger image regions.",
"parallel": "Sets parallel."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileSubnetLayerTest": {
":class": "The type Rascaled subnet layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgTileSubnetLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.ImgZeroPaddingLayer": {
":class": "Increases the resolution of the input by selecting a larger centered window. The output image will have the same number of color bands, and the area outside the source image will be setWeights to 0.",
"createdBy": "The Created by."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgZeroPaddingLayerTest": {
":class": "The type Img crop layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ImgZeroPaddingLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.MeanSqLossLayer": {
":class": "Implements the RMS loss layer (without the final square root). Implemented as a sutnetwork.",
"alpha": "Sets alpha."
},
"com.simiacryptus.mindseye.layers.cudnn.MeanSqLossLayerTest": {
":class": "The type Mean sq loss layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.MeanSqLossLayerTest.Asymetric": {
":class": "Test using asymmetric input."
},
"com.simiacryptus.mindseye.layers.cudnn.MeanSqLossLayerTest.Basic": {
":class": "Basic apply."
},
"com.simiacryptus.mindseye.layers.cudnn.NProductLayer": {
":class": "This layer multiplies together the inputs, element-by-element. It can be used to implement integer-power activation layers, such as the square needed in MeanSqLossLayer."
},
"com.simiacryptus.mindseye.layers.cudnn.NProductLayerTest": {
":class": "The type Product layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.NProductLayerTest.Double": {
":class": "Multiplication of 2 inputs using 64-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.NProductLayerTest.Double3": {
":class": "Multiplication of 3 inputs using 64-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.NProductLayerTest.Float": {
":class": "Multiplication of 2 inputs using 32-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.PoolingLayer": {
":class": "The standard image-pixel pooling layer. Using a configurable stride and window size, reduces pixels using either the Max or Avg operation.",
"alpha": "Sets alpha.",
"mode": "Sets mode.",
"paddingX": "Sets padding x.",
"paddingY": "Sets padding y.",
"strideX": "Sets stride x.",
"strideY": "Sets stride y.",
"windowX": "Sets window x.",
"windowY": "Sets window y."
},
"com.simiacryptus.mindseye.layers.cudnn.PoolingLayerTest": {
":class": "The type Pooling layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.PoolingLayerTest.Asymmetric": {
":class": "Test using an asymmetric window size."
},
"com.simiacryptus.mindseye.layers.cudnn.PoolingLayerTest.Double": {
":class": "Basic 64-bit apply."
},
"com.simiacryptus.mindseye.layers.cudnn.PoolingLayerTest.Float": {
":class": "Basic 32-bit apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ProductLayer": {
":class": "This layer multiplies together the inputs, element-by-element. It can be used to implement integer-power activation layers, such as the square needed in MeanSqLossLayer."
},
"com.simiacryptus.mindseye.layers.cudnn.ProductLayerTest": {
":class": "The type Product layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.ProductLayerTest.Double": {
":class": "Multiplication of 2 inputs using 64-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.ProductLayerTest.Float": {
":class": "Multiplication of 2 inputs using 32-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.RescaledSubnetLayer": {
":class": "This layer works as a scaling function, similar to a father wavelet. Allows convolutional and pooling layers to work across larger image regions. Implemented via CudaSystem."
},
"com.simiacryptus.mindseye.layers.cudnn.RescaledSubnetLayerTest": {
":class": "The type Rescaled subnet layer apply.",
"convolutionLayer": "The Convolution layer."
},
"com.simiacryptus.mindseye.layers.cudnn.RescaledSubnetLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.SoftmaxActivationLayer": {
":class": "The classic \"softmax\" layer. All outputs will sum to 1 and be proportional to the log of the input.",
"algorithm": "Sets algorithm.",
"mode": "Sets mode."
},
"com.simiacryptus.mindseye.layers.cudnn.SoftmaxActivationLayerTest": {
":class": "The type Softmax activation layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.SoftmaxActivationLayerTest.Basic": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.SoftmaxActivationLayerTest.Pixel": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.SoftmaxActivationLayerTest.PixelLog": {
":class": "The type Pixel log."
},
"com.simiacryptus.mindseye.layers.cudnn.SquareActivationLayer": {
":class": "This layer multiplies together the inputs, element-by-element. It can be used to implement integer-power activation layers, such as the square needed in MeanSqLossLayer.",
"alpha": "Sets alpha."
},
"com.simiacryptus.mindseye.layers.cudnn.SquareActivationLayerTest": {
":class": "The type Product layer apply."
},
"com.simiacryptus.mindseye.layers.cudnn.SquareActivationLayerTest.Double": {
":class": "Multiplication of 2 inputs using 64-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.SquareActivationLayerTest.Float": {
":class": "Multiplication of 2 inputs using 32-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.SquareActivationLayerTest.Negative": {
":class": "Multiplication of 2 inputs using 64-bit precision"
},
"com.simiacryptus.mindseye.layers.cudnn.StochasticSamplingSubnetLayer": {
":class": "This layer works as a scaling function, similar to a father wavelet. Allows convolutional and pooling layers to work across larger image regions."
},
"com.simiacryptus.mindseye.layers.cudnn.SumInputsLayer": {
":class": "Computes a weighted binary sum of two layers. Provides two weighting coefficients, one for each input. This can be used to implement a summation layer, a difference layer, a scaling layer, or any combination.",
"parallel": "Sets parallel."
},
"com.simiacryptus.mindseye.layers.cudnn.SumInputsLayerTest": {
":class": "The type BinarySumLayerTest layer apply.",
"inputBands": "The Input bands.",
"inputs": "The Inputs."
},
"com.simiacryptus.mindseye.layers.cudnn.SumInputsLayerTest.Big": {
":class": "Basic Test"
},
"com.simiacryptus.mindseye.layers.cudnn.SumInputsLayerTest.Big_Double_Add": {
":class": "Adds using double (64-bit) precision, C = A + B"
},
"com.simiacryptus.mindseye.layers.cudnn.SumInputsLayerTest.Double_Add": {
":class": "The type Double add."
},
"com.simiacryptus.mindseye.layers.cudnn.SumInputsLayerTest.Double_List": {
":class": "The type Double list."