Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
SwitWu committed Mar 15, 2023
1 parent 0d8cbf1 commit 4676a44
Show file tree
Hide file tree
Showing 2 changed files with 49 additions and 1 deletion.
48 changes: 48 additions & 0 deletions chapter01.tex
Original file line number Diff line number Diff line change
Expand Up @@ -315,6 +315,54 @@ \chapter{拓扑空间简介}
证明由 $\delta$ 诱导的拓扑也与乘积拓扑相同.
\end{exercise}

\begin{proof}
Denote by $\tau$ the product topology and denote by $\tau_\delta$ the topology
induced by $\delta$. As usual we may without loss of generality assume that $d_n\leq 1$
for all $n\geq 1$.

Choose any $B_{\delta}(x,r)\subset\tau_{\delta}$ and $y\in B_{\delta}(x,r)$.
Let
\[U:= \prod_{n=1}^m B_n(y_n,s) \times \prod_{n=m+1}^{\infty} E_n,\]
where $s$ and $m$ are selected such that $s + \frac{1}{2^m} < r - \delta(x,y)$.

Thus for any $z\in U$, we have
\begin{align*}
\delta(x,z)
& \leq \delta(x,y) + \delta(y,z) \\
& \leq \delta(x,y) + \sum_{n=1}^\infty \frac{1}{2^n} d_n(y_n, z_n) \\
& \leq \delta(x,y) + \sum_{n=1}^m \frac{1}{2^n} d_n(y_n,z_n)
+\sum_{n=m+1}^{\infty} \frac{1}{2^n} d_n(y_n, z_n) \\
& \leq \delta(x,y) + \sum_{n=1}^m \frac{1}{2^n} s + \sum_{n=m+1}^{\infty} \frac{1}{2^n} \\
& \leq \delta(x,y) + s + \frac{1}{2^m} \\
& < r.
\end{align*}
It follows that $y\in U \subset B_\delta (x,r)$. Therefore $B_\delta(x,r)$
is an open set in $\tau$ and thus $\tau_\delta \subset \tau$.

Conversely, choose any
\[U = \prod_{i\in J} B_{d_i}(x_i,r_i) \times \prod_{i\notin J} E_i \in \tau,\]
where $J$ is a finite index set and choose any $y\in U$.
Then we have $d_i(x_i, y_i) < r_i$ for all $i\in J$.

Choose some ball $B_\delta(y,r) \subset \tau_\delta$ where
$r$ is selected so small that
\[0 < r < \min_{i\in J} \frac{1}{2^i} \bigl(r_i - d_i(x_i,y_i)\bigr).\]
Then for any $z\in B_\delta (y,r)$, we have that
\[\sum_{n=1}^\infty \frac{1}{2^n} d_n(y_n, z_n) < r,\]
and so for all $i\in J$,
\[\frac{1}{2^i} d_i(y_i, z_i) < r < \frac{1}{2^i} \bigl(r_i - d_i(x_i, y_i)\bigr),\]
i.e.,
\[d_i(y_i, z_i) < r_i - d_i(x_i, y_i).\]
Therefore
\begin{align*}
d_i(x_i, z_i)
& \leq d_i(x_i, y_i) + d_i(y_i, z_i) \\
& < d_i(x_i, y_i) + r_i - d_i(x_i, y_i) = r_i,
\end{align*}
for all $i\in J$, which means $z\in U$ and thus $B_\delta(y,r)\subset U$.
This completes the proof that $\tau\subset\tau_\delta$.
\end{proof}


\begin{exercise}
证明一列紧度量空间的乘积空间(赋予乘积拓扑)是紧的可度量化空间.
Expand Down
2 changes: 1 addition & 1 deletion main.tex
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
\documentclass[chinese]{mathexercise}
\documentclass[chinese,tikzcover]{mathexercise}
\usepackage{bbm}
\title{Functional Analysis Solutions}
\date{\today}
Expand Down

0 comments on commit 4676a44

Please sign in to comment.