forked from kimkilho/CMFTest
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cmf.py
270 lines (236 loc) · 8.82 KB
/
cmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
'''
Collective Matrix Factorization
Input: data1.mat (item X user), data2.mat (item X user)
Eval: RMSE, MAE
--------------------------------------
Author: Zhongqi Lu (zluab@cse.ust.hk)
http://ihome.ust.hk/~zluab
Sep. 2011
--------------------------------------
'''
import numpy
import time
import anewton
from data import loadData
import scipy.sparse
def learn(Xs, Xstst, rc_schema, r0s, r1s, alphas, modes, K, C, T=40, tol=0.0001):
assert(rc_schema.shape[1] == len(Xs) and rc_schema.shape[0] == 2) # schema match data
assert(numpy.all(rc_schema[0, :] != rc_schema[1, :])) # should not have symmetric relations
assert(r0s != None and r1s != None)
assert(alphas != None)
res = 0
Xts = numpy.empty(len(Xs), object)
for i in xrange(len(Xs)):
# Xts[i] = Xs[i].T.tocsc()
Xts[i] = scipy.sparse.csc_matrix(Xs[i].T)
if modes[i] == 'sparselogmf' or modes[i] == 'denselogmf':
assert r0s[i] != r1s[i]
# S: number of types, Ns: sizes of each type
[S, Ns] = rel_config(Xs, rc_schema)
print S, Ns
# random initialize factor matrices
Us = numpy.empty(S, object)
print Us.shape
for i in xrange(S):
Us[i] = numpy.random.rand(Ns[i], K)/K
i = 0
step = 0.6
tgood = 0
# loss_prev = loss(Us, Xs, rc_schema, r0s, r1s, modes, alphas, C)
while i < T:
i += 1
tic = time.time()
change = 0
for t in xrange(S):
change += anewton.update(Us, Xs, Xts, rc_schema, r0s, r1s, alphas, modes, Ns, t, C, K, step)
change /= numpy.sum(Ns)
toc = time.time()
if Xstst == None:
print "iter %d, change %f, time %f" % (i, change, toc - tic)
else:
loss_tst = loss(Us, Xstst, rc_schema, r0s, r1s, modes, alphas)
print "iter %d, tst loss %.2f, change %f, time %.2f" % (i, loss_tst, change, toc - tic)
if change < tol:
print "Early terminate due to insufficient change!"
break
return [Us, r0s, r1s]
def loss(Us, Xs, rc_schema, r0s, r1s, modes, alphas, C=0):
assert(rc_schema.shape[1] == len(Xs) and rc_schema.shape[0] == 2)
res = 0
for U in Us:
res += C*numpy.dot(U.flat,U.flat)
for t in xrange(len(Xs)):
alpha_t = alphas[t]
X = Xs[t]
# X = scipy.sparse.csc_matrix(X) # FIXME: added
if X == None or X.size == 0 or alpha_t == 0:
continue
data = X.data
indices = X.indices
indptr = X.indptr
ri = rc_schema[0, t]
ci = rc_schema[1, t]
U = Us[ri]
V = Us[ci]
if modes[t] == "densemf" or modes[t] == "denselogmf":
X_i = numpy.zeros(X.shape[0])
r0 = r0s[t]
r1 = r1s[t]
# computing loss for each matrix
if modes[t] == 'densemf':
for i in xrange(X.shape[1]):
# compute loss for each column
inds_i = indices[indptr[i]:indptr[i+1]]
if inds_i.size == 0:
continue
inds_i = indices[indptr[i]:indptr[i+1]]
Y_i = numpy.dot(U,V[i,:])
X_i[inds_i] = data[indptr[i]:indptr[i+1]]
res += alpha_t * numpy.sum((Y_i-X_i)**2)
X_i[inds_i] = 0
elif modes[t] == 'denselogmf':
for i in xrange(X.shape[1]):
# compute loss for each column
inds_i = indices[indptr[i]:indptr[i + 1]]
if inds_i.size == 0:
continue
# HACK: currently assume the matrix is binary
X_i[:] = - 1
Y_i = numpy.dot(U, V[i, :])
X_i[inds_i] = 1
res += alpha_t * numpy.sum(numpy.log(1 + numpy.exp(-1 * numpy.multiply(Y_i, X_i))))
elif modes[t] == 'sparsemf':
for i in xrange(X.shape[1]):
# compute loss for each column
inds_i = indices[indptr[i]:indptr[i + 1]]
if inds_i.size == 0:
continue
Y_i = numpy.dot(U[inds_i, :], V[i, :])
X_i = data[indptr[i]:indptr[i + 1]]
res += alpha_t * numpy.sum((Y_i - X_i) ** 2)
elif modes[t] == 'sparselogmf':
for i in xrange(X.shape[1]):
# compute loss for each column
inds_i = indices[indptr[i]:indptr[i + 1]]
if inds_i.size == 0:
continue
Yi = 1/(1+numpy.exp(-numpy.dot(U[inds_i,:],V[i,:])))
Xi = (data[indptr[i]:indptr[i+1]]-r0)/(r1-r0) #normalize the data to [0,1]
res -= alpha_t*numpy.sum(numpy.multiply(Xi,numpy.log(Yi)))
res -= alpha_t*numpy.sum(numpy.multiply(1-Xi,numpy.log(1-Yi)))
else:
assert False,'Unrecognized mode %s'%modes[t]
return res
'''
get neccessary configurations of the given relation
S : number of entity types
Ns : number of instances for each entity type
'''
def rel_config(Xs, rc_schema):
S = rc_schema.max() + 1
print "S=", S
Ns = -1 * numpy.ones(S, int)
for i in xrange(len(Xs)):
print Ns
ri = rc_schema[0, i]
ci = rc_schema[1, i]
[m, n] = Xs[i].shape
print Xs[i].shape
if Ns[ri] < 0:
Ns[ri] = m
else:
assert(Ns[ri] == m)
if Ns[ci] < 0:
Ns[ci] = n
else:
assert(Ns[ci] == n)
return [S, Ns]
def predict(Us, Xs, rc_schema, r0s, r1s, modes):
Ys = []
for i in xrange(len(Xs)):
X = Xs[i]
if X == None:
Ys.append(None)
continue
ri = rc_schema[0, i]
ci = rc_schema[1, i]
U = Us[ri]
V = Us[ci]
data = X.data.copy()
indices = X.indices.copy()
indptr = X.indptr.copy()
r0 = r0s[i]
r1 = r1s[i]
if modes[i] == "sparselogmf" or modes[i] == "denselogmf":
for j in xrange(X.shape[1]):
inds_j = indices[indptr[j]:indptr[j + 1]]
if inds_j.size == 0:
continue
data[indptr[j]:indptr[j + 1]] = r0+(r1-r0)*(1.0/(1.0+numpy.exp(-numpy.dot(U[inds_j,:],V[j,:]))))
else:
for j in xrange(X.shape[1]):
inds_j = indices[indptr[j]:indptr[j + 1]]
if inds_j.size==0:
continue
data[indptr[j]:indptr[j + 1]] = numpy.dot(U[inds_j, :], V[j, :])
Y = scipy.sparse.csc_matrix((data, indices, indptr), X.shape)
Ys.append(Y)
return Ys
def test_cmf():
import scipy.io
import cfeval
# matdata1 = scipy.io.loadmat('data1.mat')
# matdata2 = scipy.io.loadmat('data1.mat')
"""
Xtrn = matdata1['Xtrn']
print Xtrn.shape
Xtrn = scipy.sparse.csc_matrix(Xtrn)
Xaux = matdata2['Xtrn'] + matdata2['Xtst']
# Xaux = Xaux.T.tocsc()
Xaux = scipy.sparse.csc_matrix(Xaux.T)
print Xaux.shape
Xtst = matdata1['Xtst']
print Xtst.shape
Xtst = scipy.sparse.csc_matrix(Xtst)
"""
Xs_trn = loadData('./data/meta.txt', './em_66_f2_m11_tr.libsvm')
#Xs_trn = loadData('./data/meta.txt', './data/em_10000_f5_t4_k1_tr.libsvm')
for mat in Xs_trn:
print mat.shape
Xs_tst = loadData('./data/meta.txt', './em_66_f2_m11_te.libsvm')
#Xs_tst = loadData('./data/meta.txt', './data/em_10000_f5_t4_k1_te.libsvm')
for mat in Xs_tst:
print mat.shape
# Xs_trn = [Xtrn, Xaux]
# Xs_tst = [Xtst, None]
# rc_schema = numpy.array([[0, 2], [1, 0]])
rc_schema = numpy.array([[0, 1, 0], [1, 2, 2]]) # rc_schema should be the same order of data matrices
C = 0.1
K = 50 # number of latent factors
alphas = [0.4, 0.4, 0.2]
T = 100 # number of iterations
modes = numpy.zeros(len(Xs_trn), object)
modes[0] = 'densemf'
modes[1] = 'sparsemf'
modes[2] = 'sparsemf'
r0s = [0.1, 0.1, 0.1]
r1s = [0.05, 0.05, 0.05]
[Us, r0s, r1s] = learn(Xs_trn, Xs_tst, rc_schema, r0s, r1s, alphas, modes, K, C, T)
print '******'
print Us[0].shape
print Us[1].shape
print Us[2].shape
print '********'
# Vt = scipy.sparse.csc_matrix(Us[0],dtype=float)
# Ut = scipy.sparse.csc_matrix(Us[1],dtype=float)
Ys_tst = predict(Us, Xs_tst, rc_schema, r0s, r1s, modes)
#tst
X = Xs_tst[0]
Y = Ys_tst[0]
print Y.shape
print Y
print "K: %d, C: %f" % (K, C)
print "alphas: ", alphas
print "rmse: %.4f , mae: %.4f\n" % (cfeval.rmse(X, Y), cfeval.mae(X, Y))
if __name__ == "__main__":
test_cmf()