-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
tim_sort.cpp
125 lines (107 loc) · 3.33 KB
/
tim_sort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
// C++ program to perform TimSort.
#include <algorithm>
#include <cassert>
#include <iostream>
#include <numeric>
const int RUN = 32;
// this function sorts array from left index to to right index which is of size
// atmost RUN
void insertionSort(int arr[], int left, int right) {
for (int i = left + 1; i <= right; i++) {
const int temp = arr[i];
int j = i - 1;
while (j >= left && arr[j] > temp) {
arr[j + 1] = arr[j];
j--;
}
arr[j + 1] = temp;
}
}
// merge function merges the sorted runs
void merge(int arr[], int l, int m, int r) {
// original array is broken in two parts, left and right array
const int len1 = m - l + 1, len2 = r - m;
int *left = new int[len1], *right = new int[len2];
for (int i = 0; i < len1; i++) left[i] = arr[l + i];
for (int i = 0; i < len2; i++) right[i] = arr[m + 1 + i];
int i = 0;
int j = 0;
int k = l;
// after comparing, we merge those two array in larger sub array
while (i < len1 && j < len2) {
if (left[i] <= right[j]) {
arr[k] = left[i];
i++;
} else {
arr[k] = right[j];
j++;
}
k++;
}
// copy remaining elements of left, if any
while (i < len1) {
arr[k] = left[i];
k++;
i++;
}
// copy remaining element of right, if any
while (j < len2) {
arr[k] = right[j];
k++;
j++;
}
delete[] left;
delete[] right;
}
// iterative Timsort function to sort the array[0...n-1] (similar to merge sort)
void timSort(int arr[], int n) {
// Sort individual subarrays of size RUN
for (int i = 0; i < n; i += RUN)
insertionSort(arr, i, std::min((i + 31), (n - 1)));
// start merging from size RUN (or 32). It will merge to form size 64, then
// 128, 256 and so on ....
for (int size = RUN; size < n; size = 2 * size) {
// pick starting point of left sub array. We are going to merge
// arr[left..left+size-1] and arr[left+size, left+2*size-1] After every
// merge, we increase left by 2*size
for (int left = 0; left < n; left += 2 * size) {
// find ending point of left sub array
// mid+1 is starting point of right sub array
const int mid = std::min((left + size - 1), (n - 1));
const int right = std::min((left + 2 * size - 1), (n - 1));
// merge sub array arr[left.....mid] & arr[mid+1....right]
merge(arr, left, mid, right);
}
}
}
// utility function to print the Array
void printArray(int arr[], int n) {
for (int i = 0; i < n; i++) printf("%d ", arr[i]);
std::cout << std::endl;
}
/**
* @brief self-test implementation
* @returns void
*/
void tests() {
// Case: array of length 65
constexpr int N = 65;
int arr[N];
std::iota(arr, arr + N, 0);
std::reverse(arr, arr + N);
assert(!std::is_sorted(arr, arr + N));
timSort(arr, N);
assert(std::is_sorted(arr, arr + N));
}
// Driver program to test above function
int main() {
tests(); // run self test implementations
int arr[] = {5, 21, 7, 23, 19};
const int n = sizeof(arr) / sizeof(arr[0]);
printf("Given Array is\n");
printArray(arr, n);
timSort(arr, n);
printf("After Sorting Array is\n");
printArray(arr, n);
return 0;
}