-
Notifications
You must be signed in to change notification settings - Fork 241
/
main.py
187 lines (171 loc) · 7.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import pandas as pd
import re
import concurrent.futures
import os
import json
import requests
import yaml
import ipaddress
from io import StringIO
# 映射字典
MAP_DICT = {'DOMAIN-SUFFIX': 'domain_suffix', 'HOST-SUFFIX': 'domain_suffix', 'host-suffix': 'domain_suffix', 'DOMAIN': 'domain', 'HOST': 'domain', 'host': 'domain',
'DOMAIN-KEYWORD':'domain_keyword', 'HOST-KEYWORD': 'domain_keyword', 'host-keyword': 'domain_keyword', 'IP-CIDR': 'ip_cidr',
'ip-cidr': 'ip_cidr', 'IP-CIDR6': 'ip_cidr',
'IP6-CIDR': 'ip_cidr','SRC-IP-CIDR': 'source_ip_cidr', 'GEOIP': 'geoip', 'DST-PORT': 'port',
'SRC-PORT': 'source_port', "URL-REGEX": "domain_regex", "DOMAIN-REGEX": "domain_regex"}
def read_yaml_from_url(url):
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
response.raise_for_status()
yaml_data = yaml.safe_load(response.text)
return yaml_data
def read_list_from_url(url):
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
if response.status_code == 200:
csv_data = StringIO(response.text)
df = pd.read_csv(csv_data, header=None, names=['pattern', 'address', 'other', 'other2', 'other3'], on_bad_lines='skip')
else:
return None
filtered_rows = []
rules = []
# 处理逻辑规则
if 'AND' in df['pattern'].values:
and_rows = df[df['pattern'].str.contains('AND', na=False)]
for _, row in and_rows.iterrows():
rule = {
"type": "logical",
"mode": "and",
"rules": []
}
pattern = ",".join(row.values.astype(str))
components = re.findall(r'\((.*?)\)', pattern)
for component in components:
for keyword in MAP_DICT.keys():
if keyword in component:
match = re.search(f'{keyword},(.*)', component)
if match:
value = match.group(1)
rule["rules"].append({
MAP_DICT[keyword]: value
})
rules.append(rule)
for index, row in df.iterrows():
if 'AND' not in row['pattern']:
filtered_rows.append(row)
df_filtered = pd.DataFrame(filtered_rows, columns=['pattern', 'address', 'other', 'other2', 'other3'])
return df_filtered, rules
def is_ipv4_or_ipv6(address):
try:
ipaddress.IPv4Network(address)
return 'ipv4'
except ValueError:
try:
ipaddress.IPv6Network(address)
return 'ipv6'
except ValueError:
return None
def parse_and_convert_to_dataframe(link):
rules = []
# 根据链接扩展名分情况处理
if link.endswith('.yaml') or link.endswith('.txt'):
try:
yaml_data = read_yaml_from_url(link)
rows = []
if not isinstance(yaml_data, str):
items = yaml_data.get('payload', [])
else:
lines = yaml_data.splitlines()
line_content = lines[0]
items = line_content.split()
for item in items:
address = item.strip("'")
if ',' not in item:
if is_ipv4_or_ipv6(item):
pattern = 'IP-CIDR'
else:
if address.startswith('+') or address.startswith('.'):
pattern = 'DOMAIN-SUFFIX'
address = address[1:]
if address.startswith('.'):
address = address[1:]
else:
pattern = 'DOMAIN'
else:
pattern, address = item.split(',', 1)
if ',' in address:
address = address.split(',', 1)[0]
rows.append({'pattern': pattern.strip(), 'address': address.strip(), 'other': None})
df = pd.DataFrame(rows, columns=['pattern', 'address', 'other'])
except:
df, rules = read_list_from_url(link)
else:
df, rules = read_list_from_url(link)
return df, rules
# 对字典进行排序,含list of dict
def sort_dict(obj):
if isinstance(obj, dict):
return {k: sort_dict(obj[k]) for k in sorted(obj)}
elif isinstance(obj, list) and all(isinstance(elem, dict) for elem in obj):
return sorted([sort_dict(x) for x in obj], key=lambda d: sorted(d.keys())[0])
elif isinstance(obj, list):
return sorted(sort_dict(x) for x in obj)
else:
return obj
def parse_list_file(link, output_directory):
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
results= list(executor.map(parse_and_convert_to_dataframe, [link])) # 使用executor.map并行处理链接, 得到(df, rules)元组的列表
dfs = [df for df, rules in results] # 提取df的内容
rules_list = [rules for df, rules in results] # 提取逻辑规则rules的内容
df = pd.concat(dfs, ignore_index=True) # 拼接为一个DataFrame
df = df[~df['pattern'].str.contains('#')].reset_index(drop=True) # 删除pattern中包含#号的行
df = df[df['pattern'].isin(MAP_DICT.keys())].reset_index(drop=True) # 删除不在字典中的pattern
df = df.drop_duplicates().reset_index(drop=True) # 删除重复行
df['pattern'] = df['pattern'].replace(MAP_DICT) # 替换pattern为字典中的值
os.makedirs(output_directory, exist_ok=True) # 创建自定义文件夹
result_rules = {"version": 2, "rules": []}
domain_entries = []
for pattern, addresses in df.groupby('pattern')['address'].apply(list).to_dict().items():
if pattern == 'domain_suffix':
rule_entry = {pattern: [address.strip() for address in addresses]}
result_rules["rules"].append(rule_entry)
# domain_entries.extend([address.strip() for address in addresses]) # 1.9以下的版本需要额外处理 domain_suffix
elif pattern == 'domain':
domain_entries.extend([address.strip() for address in addresses])
else:
rule_entry = {pattern: [address.strip() for address in addresses]}
result_rules["rules"].append(rule_entry)
# 删除 'domain_entries' 中的重复值
domain_entries = list(set(domain_entries))
if domain_entries:
result_rules["rules"].insert(0, {'domain': domain_entries})
# 处理逻辑规则
"""
if rules_list[0] != "[]":
result_rules["rules"].extend(rules_list[0])
"""
# 使用 output_directory 拼接完整路径
file_name = os.path.join(output_directory, f"{os.path.basename(link).split('.')[0]}.json")
with open(file_name, 'w', encoding='utf-8') as output_file:
result_rules_str = json.dumps(sort_dict(result_rules), ensure_ascii=False, indent=2)
result_rules_str = result_rules_str.replace('\\\\', '\\')
output_file.write(result_rules_str)
srs_path = file_name.replace(".json", ".srs")
os.system(f"sing-box rule-set compile --output {srs_path} {file_name}")
return file_name
except Exception as e:
print(f'获取链接出错,已跳过:{link},原因:{str(e)}')
pass
# 读取 links.txt 中的每个链接并生成对应的 JSON 文件
with open("../links.txt", 'r') as links_file:
links = links_file.read().splitlines()
links = [l for l in links if l.strip() and not l.strip().startswith("#")]
output_dir = "./"
result_file_names = []
for link in links:
result_file_name = parse_list_file(link, output_directory=output_dir)
result_file_names.append(result_file_name)
# 打印生成的文件名
# for file_name in result_file_names:
# print(file_name)