-
Notifications
You must be signed in to change notification settings - Fork 16
/
detect.go
193 lines (183 loc) · 4.33 KB
/
detect.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
package detect
import (
"errors"
"fmt"
"io"
"math"
"github.com/Trisia/randomness"
)
func createDistributions(s, m int) [][]float64 {
res := make([][]float64, m)
for i := 0; i < m; i++ {
res[i] = make([]float64, s)
}
return res
}
// FactoryDetect 出厂检测,15种检测,每组 10^6比特,分50组
// source: 随机源
func FactoryDetect(source io.Reader) (bool, error) {
s := 50
t := Threshold(s)
buf := make([]byte, 1000_000/8)
counters := make([]int, 15)
distributions := createDistributions(s, 15)
for i := 0; i < s; i++ {
_, err := io.ReadFull(source, buf)
if err != nil {
return false, err
}
resArr := Round15(buf)
for idx, result := range resArr {
distributions[idx][i] = result.Q
if result.Pass {
counters[idx]++
}
}
}
for i, n := range counters {
if n < t {
return false, fmt.Errorf("%s %d/%d", randomness.TestMethodArr[i].Name, n, s)
}
}
for i := range distributions {
Pt := ThresholdQ(distributions[i])
if Pt < randomness.AlphaT {
return false, fmt.Errorf("%s %f", randomness.TestMethodArr[i].Name, Pt)
}
}
return true, nil
}
// PowerOnDetect 上电自检,15种检测,每组 10^6比特,分20组
// source: 随机源
func PowerOnDetect(source io.Reader) (bool, error) {
s := 20
t := Threshold(s)
buf := make([]byte, 1000_000/8)
counters := make([]int, 15)
distributions := createDistributions(s, 15)
for i := 0; i < s; i++ {
_, err := io.ReadFull(source, buf)
if err != nil {
return false, err
}
resArr := Round15(buf)
for idx, result := range resArr {
distributions[idx][i] = result.Q
if result.Pass {
counters[idx]++
}
}
}
for i, n := range counters {
if n < t {
return false, fmt.Errorf("%s %d/%d", randomness.TestMethodArr[i].Name, n, s)
}
}
for i := range distributions {
Pt := ThresholdQ(distributions[i])
if Pt < randomness.AlphaT {
return false, fmt.Errorf("%s %f", randomness.TestMethodArr[i].Name, Pt)
}
}
return true, nil
}
// PeriodDetect 周期性检测,除去离散傅里叶检测、线型复杂度检测、通用统计的12种检测
// 检测 20组,每组 20000比特
// source: 随机源
func PeriodDetect(source io.Reader) (bool, error) {
s := 20
t := Threshold(s)
buf := make([]byte, 20000/8)
counters := make([]int, 12)
distributions := createDistributions(s, 12)
for i := 0; i < s; i++ {
_, err := io.ReadFull(source, buf)
if err != nil {
return false, err
}
resArr := Round12(buf)
for idx, result := range resArr {
distributions[idx][i] = result.Q
if result.Pass {
counters[idx]++
}
}
}
for i, n := range counters {
if n < t {
return false, fmt.Errorf("%s %d/%d", randomness.TestMethodArr[i].Name, n, s)
}
}
for i := range distributions {
Pt := ThresholdQ(distributions[i])
if Pt < randomness.AlphaT {
return false, fmt.Errorf("%s %f", randomness.TestMethodArr[i].Name, Pt)
}
}
return true, nil
}
// SingleDetect 单次检测,单根据实际应用时每次才随机数的大小确定,检测采用扑克检测
// source: 随机源
// numByte: 采集字节数,不能小于16
func SingleDetect(source io.Reader, numByte int) (bool, error) {
data := make([]byte, numByte)
_, err := io.ReadFull(source, data)
if err != nil {
return false, err
}
n := len(data) * 8
if n < 128 {
return false, errors.New("长度不能低于128比特(16 byte)")
}
m := 4
if n < 320 {
m = 2
} else if n/8 >= 1280 { // n/m >= 5 * 2^m
m = 8
}
p, _ := randomness.PokerTestBytes(data, m)
return p >= randomness.Alpha, nil
}
// Threshold 样本通过检测判定数量
// s: 检测样本数
// return 通过检测需要的样本数量
func Threshold(s int) int {
a := randomness.Alpha
_s := float64(s)
r := _s * (1 - a - 3*math.Sqrt((a*(1-a))/_s))
return int(math.Ceil(r))
}
// ThresholdQ 样本分布均匀性 (k=10)
func ThresholdQ(qValues []float64) float64 {
var dist [10]int
for _, q := range qValues {
switch {
case q < 0.1:
dist[0]++
case q < 0.2:
dist[1]++
case q < 0.3:
dist[2]++
case q < 0.4:
dist[3]++
case q < 0.5:
dist[4]++
case q < 0.6:
dist[5]++
case q < 0.7:
dist[6]++
case q < 0.8:
dist[7]++
case q < 0.9:
dist[8]++
default:
dist[9]++
}
}
var V float64 = 0
sk := float64(len(qValues)) / 10
for i := 0; i < 10; i++ {
V += (float64(dist[i]) - sk) * (float64(dist[i]) - sk) / sk
}
return randomness.Igamc(4.5, V/2)
}