This is the pytorch implementation of the paper.
python main.py [--dataset DATASET] [--data_dir DATA_DIR]
[--net NET] [--batch_size BATCH_SIZE] [--gpu GPU]
[--lr LR] [--epoch EPOCH] [--resume]
[--alpha ALPHA] [--G_size G_SIZE] [--varepsilon VAREPSILON] [--rep_aug rep_aug]
- batch size: 128
- learning rate: 0.1
- training epoch: 200
- the hyperparameter
$\alpha$ : 0.005 - the size of Guide Set: 5% of the size of training set
- the hyperparameter
$\varepsilon$ : 0.04 - the approaches of replacement and augmentation: augmentation
@inproceedings{song2023deep,
title={Deep perturbation learning: enhancing the network performance via image perturbations},
author={Song, Zifan and Gong, Xiao and Hu, Guosheng and Zhao, Cairong},
booktitle={International Conference on Machine Learning},
pages={32273--32287},
year={2023},
organization={PMLR}
}