Skip to content

Latest commit

 

History

History
21 lines (18 loc) · 880 Bytes

README.md

File metadata and controls

21 lines (18 loc) · 880 Bytes

Tensor Factorization

This is a python implementation of tensor factorization (tucker decomposition) using SGD and ALS.

Input Data Format

Each row presents one rating infomation. The last column is rating value (float) and the rest are features (integer).

Feat1,Feat2,Feat3,Rating
    0,    3,    1,    2
    1,    2,    2,    4

Quick Start

$ python TF.py --train data/ml-1m/user_train.txt --test data/ml-1m/user_test.txt --reg 0.1 --regS 0.1 --lr 0.001 --lrS 0.001

You can type python TF.py --help for more details about the parameters. It is recommended to start from a small learning rate (especially for lrS).

Reference

* Karatzoglou, Alexandros, et al. Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. Proceedings of the fourth ACM conference on Recommender systems. ACM, 2010.