EYRE@CIKM'19 paper: "Entity Summarization with Attention"
- Ubuntu 16.04
- python 3.5+
- pytorch 1.0.1
- java 8
pip install numpy
pip install tqdm
git clone git@github.com:WeiDongjunGabriel/ESA.git
cd .../ESA
cd model
python main.py
we also provide a commandline tool for training the ESA model, you can also run the following command for more details:
python main.py -h
for example, if you want to train the model in dbpedia, the commands are as follows:
python main.py \
--db_name dbpedia \
--mode train \
--transE_dim 100 \
--pred_embedding_dim 100 \
--lr 0.0001 \
--clip 50 \
--loss_function BCE \
--regularization False \
--n_epoch 50 \
--save_every 2
if you want to test the model and generate entity summarization results, the commands are as follows:
python main.py \
--db_name dbpedia \
--model test \
--use_epoch 48
we also provdie a mode called "all" to train and test the model at the same time, the commands are as follows:
python main.py \
--db_name dbpedia \
--mode all \
--transE_dim 100 \
--pred_embedding_dim 100 \
--lr 0.0001 \
--clip 50 \
--loss_function BCE \
--regularization False \
--n_epoch 50 \
--save_every 2 \
--use_epoch 48
cd .../ESA
cd test
sh run.sh
if you use our model or code, please kindly cite it as follows:
@inproceedings{ESA,
author = {Dongjun Wei and
Yaxin Liu and
Fuqing Zhu and
Liangjun Zang and
Wei Zhou and
Jizhong Han and
Songlin Hu},
title = {ESA: Entity Summarization with Attention},
booktitle = {EYRE@CIKM},
year = {2019}
}