-
Notifications
You must be signed in to change notification settings - Fork 478
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
向量存储建议 #38
Comments
如何运行Qdrant有各种模式,根据所选择的模式,会有一些细微的差别。选项包括: |
本地模式,不使用Qdrant服务器,也可以将向量存储在磁盘上,这样它们就可以在两次运行之间保持不变。 |
应该可以,如果您想重用现有的集合,您总是可以自己创建一个Qdrant实例,并将连接详细信息传递给Qdrant Client实例。 client = qdrant_client.QdrantClient( |
这个就有点像启动的时候,加载下历史存储数据,从而保证一直不丢失 |
检索 |
批量加载文档可以看看这个函数 |
如果需要对存量的大规模文档进行vector存储的话,可能使用基于磁盘(disk-based)的数据库进行缓存可能是更好的选择。 |
Milvus Lite |
我的代码这样,帮看看有没有问题,获取不了中文的相似的文本 def qdrant(docs_path): from qdrant_client import QdrantClient client = QdrantClient(host="localhost",port=6333) qdrant=Qdrant(client,'Finance',embeddings.embed_query) documents=qdrant.similarity_search("test",4) for doc in documents: ) |
目前尝试使用Qdrant,后续将做更细致的调研。 参考资料: |
是否可以增量更新collections的api |
No description provided.
The text was updated successfully, but these errors were encountered: