This is the Pytorch implementaion of the paper:
Discriminative Cross-Modal Data Augmentation for Medical Imaging Applications
- torchvision
- torch
- tensorboard
- dominate
- visdom
- fastai
- tensorboardX
- generate_part :Generate fake CT images from other modalities
- mri2ct.sh :Train translator (mri -> ct)
- pet2ct.sh :Train translator (prt -> ct)
- mri_generate.sh :Generate fake CT images from MRI images using trained translator
- pet_generator.sh :Generate fake CT images from PET images using trained translator
- task_part :Combining fake and real images to do prediction
- mr_ct.sh :Do prediction using real and fake(mr2ct) CT images
- pet_ct.sh :Do prediction using real and fake(pet2ct) CT images
- datasets
- real_ct :real CT images
- real_mri :real MRI images
- real_pet :real PET images
- fake_mr2ct :fake CT images (MRI->CT)
- fake_pet2ct :fake CT images (PET->CT)
- mri
- trainA :Train set of source modality images (Here is MRI)
- trainB :Train set of target modality images (Here is CT)
- valA :Validation set of source modality images (Here is MRI)
- valB :Validation set of target modality images (Here is CT)
- pet
- trainA :Train set of source modality images (Here is PET)
- trainB :Train set of target modality images (Here is CT)
- valA :Validation set of source modality images (Here is PET)
- valB :Validation set of target modality images (Here is CT)
We use three datasets:
- MRI dataset: Link to MRI dataset
- PET dataset: Link to PET dataset
- CT dataset: Link to CT dataset
For MRI -> CT:
cd generate_part
sh mri2ct.sh
For PET -> CT:
cd generate_part
sh pet2ct.sh
For MRI -> CT:
cd generate_part
sh mri_generate.sh
For PET -> CT:
cd generate_part
sh pet_generate.sh
For MRI + CT:
cd task_part
sh mri_ct.sh
For PET + CT:
cd task_part
sh pet_ct.sh
CycleGAN: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix