forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
latch.go
300 lines (261 loc) · 7.38 KB
/
latch.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// Copyright 2018 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package latch
import (
"bytes"
"math/bits"
"sort"
"sync"
"time"
"github.com/cznic/mathutil"
log "github.com/sirupsen/logrus"
"github.com/spaolacci/murmur3"
)
type node struct {
slotID int
key []byte
maxCommitTS uint64
value *Lock
next *node
}
// latch stores a key's waiting transactions information.
type latch struct {
queue *node
count int
waiting []*Lock
sync.Mutex
}
// Lock is the locks' information required for a transaction.
type Lock struct {
keys [][]byte
// The slot IDs of the latches(keys) that a startTS must acquire before being able to processed.
requiredSlots []int
// The number of latches that the transaction has acquired. For status is stale, it include the
// latch whose front is current lock already.
acquiredCount int
// Current transaction's startTS.
startTS uint64
// Current transaction's commitTS.
commitTS uint64
wg sync.WaitGroup
isStale bool
}
// acquireResult is the result type for acquire()
type acquireResult int32
const (
// acquireSuccess is a type constant for acquireResult.
// which means acquired success
acquireSuccess acquireResult = iota
// acquireLocked is a type constant for acquireResult
// which means still locked by other Lock.
acquireLocked
// acquireStale is a type constant for acquireResult
// which means current Lock's startTS is stale.
acquireStale
)
// IsStale returns whether the status is stale.
func (l *Lock) IsStale() bool {
return l.isStale
}
func (l *Lock) isLocked() bool {
return !l.isStale && l.acquiredCount != len(l.requiredSlots)
}
// SetCommitTS sets the lock's commitTS.
func (l *Lock) SetCommitTS(commitTS uint64) {
l.commitTS = commitTS
}
// Latches which are used for concurrency control.
// Each latch is indexed by a slot's ID, hence the term latch and slot are used in interchangeable,
// but conceptually a latch is a queue, and a slot is an index to the queue
type Latches struct {
slots []latch
}
type bytesSlice [][]byte
func (s bytesSlice) Len() int {
return len(s)
}
func (s bytesSlice) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s bytesSlice) Less(i, j int) bool {
return bytes.Compare(s[i], s[j]) < 0
}
// NewLatches create a Latches with fixed length,
// the size will be rounded up to the power of 2.
func NewLatches(size uint) *Latches {
powerOfTwoSize := 1 << uint32(bits.Len32(uint32(size-1)))
slots := make([]latch, powerOfTwoSize)
return &Latches{
slots: slots,
}
}
// genLock generates Lock for the transaction with startTS and keys.
func (latches *Latches) genLock(startTS uint64, keys [][]byte) *Lock {
sort.Sort(bytesSlice(keys))
return &Lock{
keys: keys,
requiredSlots: latches.genSlotIDs(keys),
acquiredCount: 0,
startTS: startTS,
}
}
func (latches *Latches) genSlotIDs(keys [][]byte) []int {
slots := make([]int, 0, len(keys))
for _, key := range keys {
slots = append(slots, latches.slotID(key))
}
return slots
}
// slotID return slotID for current key.
func (latches *Latches) slotID(key []byte) int {
return int(murmur3.Sum32(key)) & (len(latches.slots) - 1)
}
// acquire tries to acquire the lock for a transaction.
func (latches *Latches) acquire(lock *Lock) acquireResult {
if lock.IsStale() {
return acquireStale
}
for lock.acquiredCount < len(lock.requiredSlots) {
status := latches.acquireSlot(lock)
if status != acquireSuccess {
return status
}
}
return acquireSuccess
}
// release releases all latches owned by the `lock` and returns the wakeup list.
// Preconditions: the caller must ensure the transaction's status is not locked.
func (latches *Latches) release(lock *Lock, wakeupList []*Lock) []*Lock {
wakeupList = wakeupList[:0]
for lock.acquiredCount > 0 {
if nextLock := latches.releaseSlot(lock); nextLock != nil {
wakeupList = append(wakeupList, nextLock)
}
}
return wakeupList
}
func (latches *Latches) releaseSlot(lock *Lock) (nextLock *Lock) {
key := lock.keys[lock.acquiredCount-1]
slotID := lock.requiredSlots[lock.acquiredCount-1]
latch := &latches.slots[slotID]
lock.acquiredCount--
latch.Lock()
defer latch.Unlock()
find := findNode(latch.queue, key)
if find.value != lock {
panic("releaseSlot wrong")
}
find.maxCommitTS = mathutil.MaxUint64(find.maxCommitTS, lock.commitTS)
find.value = nil
// Make a copy of the key, so latch does not reference the transaction's memory.
// If we do not do it, transaction memory can't be recycle by GC and there will
// be a leak.
copyKey := make([]byte, len(find.key))
copy(copyKey, find.key)
find.key = copyKey
if len(latch.waiting) == 0 {
return nil
}
var idx int
for idx = 0; idx < len(latch.waiting); idx++ {
waiting := latch.waiting[idx]
if bytes.Compare(waiting.keys[waiting.acquiredCount], key) == 0 {
break
}
}
// Wake up the first one in waiting queue.
if idx < len(latch.waiting) {
nextLock = latch.waiting[idx]
// Delete element latch.waiting[idx] from the array.
copy(latch.waiting[idx:], latch.waiting[idx+1:])
latch.waiting[len(latch.waiting)-1] = nil
latch.waiting = latch.waiting[:len(latch.waiting)-1]
if find.maxCommitTS > nextLock.startTS {
find.value = nextLock
nextLock.acquiredCount++
nextLock.isStale = true
}
}
return
}
func (latches *Latches) acquireSlot(lock *Lock) acquireResult {
key := lock.keys[lock.acquiredCount]
slotID := lock.requiredSlots[lock.acquiredCount]
latch := &latches.slots[slotID]
latch.Lock()
defer latch.Unlock()
// Try to recycle to limit the memory usage.
if latch.count >= latchListCount {
latch.recycle(lock.startTS)
}
find := findNode(latch.queue, key)
if find == nil {
tmp := &node{
slotID: slotID,
key: key,
value: lock,
}
tmp.next = latch.queue
latch.queue = tmp
latch.count++
lock.acquiredCount++
return acquireSuccess
}
if find.maxCommitTS > lock.startTS {
lock.isStale = true
return acquireStale
}
if find.value == nil {
find.value = lock
lock.acquiredCount++
return acquireSuccess
}
// Push the current transaction into waitingQueue.
latch.waiting = append(latch.waiting, lock)
return acquireLocked
}
// recycle is not thread safe, the latch should acquire its lock before executing this function.
func (l *latch) recycle(currentTS uint64) int {
total := 0
fakeHead := node{next: l.queue}
prev := &fakeHead
for curr := prev.next; curr != nil; curr = curr.next {
if tsoSub(currentTS, curr.maxCommitTS) >= expireDuration && curr.value == nil {
l.count--
prev.next = curr.next
total++
} else {
prev = curr
}
}
l.queue = fakeHead.next
return total
}
func (latches *Latches) recycle(currentTS uint64) {
total := 0
for i := 0; i < len(latches.slots); i++ {
latch := &latches.slots[i]
latch.Lock()
total += latch.recycle(currentTS)
latch.Unlock()
}
log.Debugf("recycle run at %v, recycle count = %d...\n", time.Now(), total)
}
func findNode(list *node, key []byte) *node {
for n := list; n != nil; n = n.next {
if bytes.Compare(n.key, key) == 0 {
return n
}
}
return nil
}