Cox-Ingersoll-Ross model
This Shiny app simulates interest rate paths for one-factor equilibrium models using various stochastic differential equations (SDEs). Users can specify different types of drift
For a constant long-term equilibrium rate
where:
-
$\alpha$ is the speed of mean reversion. -
$\sigma$ is the volatility parameter. -
$\gamma$ is the elasticity of volatility. -
$dW(t)$ represents the increments of a Wiener process (Brownian motion).
-
$\gamma = 0$ : Vasicek model (normal volatility model) -
$\gamma = 0.5$ : Cox-Ingersoll-Ross model (square root volatility model) -
$\gamma = 1$ : Dothan model (proportional volatility model)
For a constant long-term equilibrium rate
For a dynamic long-term equilibrium rate
For a dynamic long-term equilibrium rate
-
Equilibrium Type:
-
Constant
: User specifies$\bar{r}$ . -
Dynamic
: User specifies$\theta(t)$ as a function of time$t$ .
-
-
Volatility Term:
-
CEV
: User specifies$\sigma$ and$\gamma$ . -
Dynamic
: User specifies$\sigma(t)$ as a function of time$t$ .
-
-
$\alpha$ : Speed of mean reversion. -
$\sigma$ : Volatility parameter (used ifvolatilityType
is CEV). -
$\gamma$ : Elasticity of volatility (used ifvolatilityType
is CEV). -
$r_0$ : Initial interest rate. -
$T$ : Time horizon for the simulation. -
steps: Number of discrete time steps.
-
nPaths: Number of simulated paths.
-
confInterval: Confidence interval for the summary statistics.
-
Equilibrium Type: Select either
Constant
orDynamic
equilibrium. -
Volatility Type: Select either
CEV
orDynamic
volatility. -
Input Parameters: Provide values for
$\alpha$ ,$\sigma$ ,$\gamma$ ,$r_0$ ,$T$ ,steps
,nPaths
, andconfInterval
. -
Simulate: Click the
Simulate
button to generate interest rate paths. -
Download: Use the
Download Simulated Paths
button to download the simulated data.
- Interest Rate Plot: Displays the simulated interest rate paths.
- Summary Plot: Shows the median and confidence interval of the simulated paths.
- Dynamic equilibrium and volatility also a function of current rate
$r$ - no-arbitrage and multi-factor models
- paramater estimation based on empirical data