-
Notifications
You must be signed in to change notification settings - Fork 0
/
tools.py
77 lines (61 loc) · 2.21 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""
Author: Ying
Date: 2018/09
"""
import numpy as np
import pandas as pd
import constant
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from pandas import DataFrame
def build_datasets():
"""
读取数据集
返回training & testing数据集的X & y
"""
# 读取数据集
df = pd.read_csv(constant.dataset_file)
print("Dataset has {} entries and {} features".format(*df.shape))
# 构建training & testing数据集的X & y
X = df.drop(constant.label, axis=1)
y = df[constant.label]
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=.1, random_state=42)
return X_train, X_test, y_train, y_test
def build_baseline_mae(y_train, y_test):
"""
构建baseline model
返回baseline model的MAE值
"""
# "Learn" the mean from the training data
mean_train = np.mean(y_train)
# Get predictions on the test set
baseline_predictions = np.ones(y_test.shape) * mean_train
# Compute MAE
mae_baseline = mean_absolute_error(y_test, baseline_predictions)
print("Baseline MAE is {:.5f}".format(mae_baseline))
return
def build_prediction_diff(y_hat, y_test):
"""
保存y_hat, y_test 为 .csv
保存 prediction result 形式为 ['y_hat', 'y', 'diff']
"""
# save y_hat {ndarray} as .csv file with column = 0
y_hat = np.insert(y_hat, 0, values=0, axis=0)
np.savetxt(constant.test_y_hat_file, y_hat, delimiter=",")
print('Saved y_hat to', constant.test_y_hat_file)
# save y_test {Series} as .csv with index = 0 ~ 276
y = DataFrame()
y['y'] = y_test
y.to_csv(constant.test_y_file, index=None)
print('Saved y_test result to', constant.test_y_file)
# concat 2 data sets and compute diff
df_y_hat = pd.read_csv(constant.test_y_hat_file)
df_y = pd.read_csv(constant.test_y_file)
df = pd.concat([df_y_hat, df_y], axis=1)
df.columns = ['y_hat', 'y']
df['diff'] = abs(df['y_hat'] - df['y'])
# save df as prediction result
df.to_csv(constant.prediction_file, index=None)
print('Saved prediction result to', constant.prediction_file)
print('================\n')