-
Notifications
You must be signed in to change notification settings - Fork 4
/
HyperTools.py
129 lines (112 loc) · 4.29 KB
/
HyperTools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
def featureNormalize(X,type):
#type==1 x = (x-mean)/std(x)
#type==2 x = (x-max(x))/(max(x)-min(x))
if type==1:
mu = np.mean(X,0)
X_norm = X-mu
sigma = np.std(X_norm,0)
X_norm = X_norm/sigma
return X_norm
elif type==2:
minX = np.min(X,0)
maxX = np.max(X,0)
X_norm = X-minX
X_norm = X_norm/(maxX-minX)
return X_norm
def DrawResult(labels,imageID):
#ID=1:Pavia University
#ID=2:Salinas
num_class = int(labels.max())
if imageID == 1:
row = 610
col = 340
palette = np.array([[216,191,216],
[0,255,0],
[0,255,255],
[45,138,86],
[255,0,255],
[255,165,0],
[159,31,239],
[255,0,0],
[255,255,0]])
palette = palette*1.0/255
elif imageID ==2:
row = 512
col = 217
palette = np.array([[37, 58, 150],
[47, 78, 161],
[56, 87, 166],
[56, 116, 186],
[51, 181, 232],
[112, 204, 216],
[119, 201, 168],
[148, 204, 120],
[188, 215, 78],
[238, 234, 63],
[246, 187, 31],
[244, 127, 33],
[239, 71, 34],
[238, 33, 35],
[180, 31, 35],
[123, 18, 20]])
palette = palette*1.0/255
X_result = np.zeros((labels.shape[0],3))
for i in range(1,num_class+1):
X_result[np.where(labels==i),0] = palette[i-1,0]
X_result[np.where(labels==i),1] = palette[i-1,1]
X_result[np.where(labels==i),2] = palette[i-1,2]
X_result = np.reshape(X_result,(row,col,3))
plt.axis ( "off" )
plt.imshow(X_result)
return X_result
def CalAccuracy(predict,label):
n = label.shape[0]
OA = np.sum(predict==label)*1.0/n
correct_sum = np.zeros((max(label)+1))
reali = np.zeros((max(label)+1))
predicti = np.zeros((max(label)+1))
producerA = np.zeros((max(label)+1))
for i in range(0,max(label)+1):
correct_sum[i] = np.sum(label[np.where(predict==i)]==i)
reali[i] = np.sum(label==i)
predicti[i] = np.sum(predict==i)
producerA[i] = correct_sum[i] / reali[i]
Kappa = (n*np.sum(correct_sum) - np.sum(reali * predicti)) *1.0/ (n*n - np.sum(reali * predicti))
return OA,Kappa,producerA
def LoadHSI(dataID=1,num_label=150):
#ID=1:Pavia University
#ID=2:Salinas
if dataID==1:
data = sio.loadmat('./Data/PaviaU.mat')
X = data['paviaU']
data = sio.loadmat('./Data/PaviaU_gt.mat')
Y = data['paviaU_gt']
elif dataID==2:
data = sio.loadmat('./Data/Salinas_corrected.mat')
X = data['salinas_corrected']
data = sio.loadmat('./Data/Salinas_gt.mat')
Y = data['salinas_gt']
[row,col,n_feature] = X.shape
K = row*col
X = X.reshape(K, n_feature)
n_class = Y.max()
X = featureNormalize(X,2)
X = np.reshape(X,(row,col,n_feature))
X = np.moveaxis(X,-1,0)
Y = Y.reshape(K,).astype('int')
for i in range(1,n_class+1):
index = np.where(Y==i)[0]
n_data = index.shape[0]
np.random.seed(12345)
randomArray_label = np.random.permutation(n_data)
train_num = num_label
if i==1:
train_array = index[randomArray_label[0:train_num]]
test_array = index[randomArray_label[train_num:n_data]]
else:
train_array = np.append(train_array,index[randomArray_label[0:train_num]])
test_array = np.append(test_array,index[randomArray_label[train_num:n_data]])
return X,Y,train_array,test_array