forked from AFAgarap/malware-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
203 lines (182 loc) · 6.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2017 Abien Fred Agarap
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
"""Main program implementing the deep learning algorithms"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__version__ = "0.1.0"
__author__ = "Abien Fred Agarap"
import argparse
from models.cnn_svm import CNN
from models.gru_svm import GruSvm
from models.mlp_svm import MLP
import numpy as np
from sklearn.model_selection import train_test_split
from utils.data import load_data
from utils.data import one_hot_encode
BATCH_SIZE = 256
CELL_SIZE = 256
DROPOUT_RATE = 0.85
LEARNING_RATE = 1e-3
NODE_SIZE = [512, 256, 128]
NUM_LAYERS = 5
def parse_args():
parser = argparse.ArgumentParser(
description="Deep Learning Using Support Vector Machine for Malware Classification"
)
group = parser.add_argument_group("Arguments")
group.add_argument(
"-m",
"--model",
required=True,
type=int,
help="[1] CNN-SVM, [2] GRU-SVM, [3] MLP-SVM",
)
group.add_argument(
"-d", "--dataset", required=True, type=str, help="the dataset to be used"
)
group.add_argument(
"-n", "--num_epochs", required=True, type=int, help="number of epochs"
)
group.add_argument(
"-c",
"--penalty_parameter",
required=True,
type=float,
help="the SVM C penalty parameter",
)
group.add_argument(
"-k",
"--checkpoint_path",
required=True,
type=str,
help="path where to save the trained model",
)
group.add_argument(
"-l",
"--log_path",
required=True,
type=str,
help="path where to save the TensorBoard logs",
)
group.add_argument(
"-r",
"--result_path",
required=True,
type=str,
help="path where to save actual and predicted labels array",
)
arguments = parser.parse_args()
return arguments
def main(arguments):
model_choice = arguments.model
assert (
model_choice == 1 or model_choice == 2 or model_choice == 3
), "Invalid choice: Choose among 1, 2, and 3 only."
dataset = np.load(arguments.dataset)
features, labels = load_data(dataset=dataset)
labels = one_hot_encode(labels=labels)
# get the number of features
num_features = features.shape[1]
# get the number of classes
num_classes = labels.shape[1]
# split the dataset by 70/30
train_features, test_features, train_labels, test_labels = train_test_split(
features, labels, test_size=0.30, stratify=labels
)
train_size = int(train_features.shape[0])
train_features = train_features[: train_size - (train_size % BATCH_SIZE)]
train_labels = train_labels[: train_size - (train_size % BATCH_SIZE)]
test_size = int(test_features.shape[0])
test_features = test_features[: test_size - (test_size % BATCH_SIZE)]
test_labels = test_labels[: test_size - (test_size % BATCH_SIZE)]
if model_choice == 1:
model = CNN(
alpha=LEARNING_RATE,
batch_size=BATCH_SIZE,
num_classes=num_classes,
penalty_parameter=arguments.penalty_parameter,
sequence_length=num_features,
)
model.train(
checkpoint_path=arguments.checkpoint_path,
log_path=arguments.log_path,
result_path=arguments.result_path,
epochs=arguments.num_epochs,
train_data=[train_features, train_labels],
train_size=int(train_features.shape[0]),
test_data=[test_features, test_labels],
test_size=int(test_features.shape[0]),
)
elif model_choice == 2:
train_features = np.reshape(
train_features,
(
train_features.shape[0],
int(np.sqrt(train_features.shape[1])),
int(np.sqrt(train_features.shape[1])),
),
)
test_features = np.reshape(
test_features,
(
test_features.shape[0],
int(np.sqrt(test_features.shape[1])),
int(np.sqrt(test_features.shape[1])),
),
)
model = GruSvm(
alpha=LEARNING_RATE,
batch_size=BATCH_SIZE,
cell_size=CELL_SIZE,
dropout_rate=DROPOUT_RATE,
num_classes=num_classes,
num_layers=NUM_LAYERS,
sequence_height=train_features.shape[2],
sequence_width=train_features.shape[1],
svm_c=arguments.penalty_parameter,
)
model.train(
checkpoint_path=arguments.checkpoint_path,
log_path=arguments.log_path,
epochs=arguments.num_epochs,
train_data=[train_features, train_labels],
train_size=int(train_features.shape[0]),
test_data=[test_features, test_labels],
test_size=int(test_features.shape[0]),
result_path=arguments.result_path,
)
elif model_choice == 3:
model = MLP(
alpha=LEARNING_RATE,
batch_size=BATCH_SIZE,
node_size=NODE_SIZE,
num_classes=num_classes,
num_features=num_features,
penalty_parameter=arguments.penalty_parameter,
)
model.train(
checkpoint_path=arguments.checkpoint_path,
num_epochs=arguments.num_epochs,
log_path=arguments.log_path,
train_data=[train_features, train_labels],
train_size=int(train_features.shape[0]),
test_data=[test_features, test_labels],
test_size=int(test_features.shape[0]),
result_path=arguments.result_path,
)
if __name__ == "__main__":
args = parse_args()
main(args)