Official implementation of "Transitivity Recovering Decompositions: Interpretable and Robust Fine-Grained Relationships", NeurIPS 2023.
This project is implemented using PyTorch and PyTorch Geometric as the backbone. A conda environment with all related dependencies can be created as follows:
- Clone the project repository:
git clone https://github.com/abhrac/trd.git
cd trd
- Install dependencies and activate conda environment:
conda env create -f environment.yml
conda activate trd
- Run:
python3 src/main.py --dataset='FGVCAircraft' --seed=0 --model-type=multiview_hausdorff --train-backbone --crop-mode=random --local-weight=1e-4 --train-bsize=8 --gpu=1 --recovery-epoch=1
The run_expt.sh
file contains sample training commands.
@inproceedings{
chaudhuri2023TRD,
title={Transitivity Recovering Decompositions: Interpretable and Robust Fine-Grained Relationships},
author={Abhra Chaudhuri and Massimiliano Mancini and Zeynep Akata and Anjan Dutta},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=wUNPmdE273}
}