An efficient combinatorics library for JavaScript utilizing ES2015 generators. Generate combinations, permutations, and power sets of arrays or strings.
- Node
npm install generatorics
var G = require('generatorics');
- Browser
bower install generatorics
<script src="file/path/to/generatorics.js"></script>
Note: This module is not transpiled for compatibility, as it degrades the performance. Check your browser/node version.
for (var subset of G.powerSet(['a', 'b', 'c'])) {
console.log(subset);
}
// [ ]
// [ 'a' ]
// [ 'a', 'b' ]
// [ 'a', 'b', 'c' ]
// [ 'a', 'c' ]
// [ 'b' ]
// [ 'b', 'c' ]
// [ 'c' ]
for (var perm of G.permutation(['a', 'b', 'c'], 2)) {
console.log(perm);
}
// [ 'a', 'b' ]
// [ 'a', 'c' ]
// [ 'b', 'a' ]
// [ 'b', 'c' ]
// [ 'c', 'a' ]
// [ 'c', 'b' ]
for (var perm of G.permutation(['a', 'b', 'c'])) { // assumes full length of array
console.log(perm);
}
// [ 'a', 'b', 'c' ]
// [ 'a', 'c', 'b' ]
// [ 'b', 'a', 'c' ]
// [ 'b', 'c', 'a' ]
// [ 'c', 'b', 'a' ]
// [ 'c', 'a', 'b' ]
for (var comb of G.combination(['a', 'b', 'c'], 2)) {
console.log(comb);
}
// [ 'a', 'b' ]
// [ 'a', 'c' ]
// [ 'b', 'c' ]
For efficiency, each array being yielded is the same one being mutated on each iteration. DO NOT mutate the array.
var combs = [];
for (var comb of G.combination(['a', 'b', 'c'], 2)) {
combs.push(comb);
}
console.log(combs);
// [ [ 'b', 'c' ], [ 'b', 'c' ], [ 'b', 'c' ] ]
You can clone if necessary, or use the clone submodule
for (var perm of G.permutationCombination(['a', 'b', 'c'])) {
console.log(perm);
}
// [ ]
// [ 'a' ]
// [ 'a', 'b' ]
// [ 'a', 'b', 'c' ]
// [ 'a', 'c' ]
// [ 'a', 'c', 'b' ]
// [ 'b' ]
// [ 'b', 'a' ]
// [ 'b', 'a', 'c' ]
// [ 'b', 'c' ]
// [ 'b', 'c', 'a' ]
// [ 'c' ]
// [ 'c', 'a' ]
// [ 'c', 'a', 'b' ]
// [ 'c', 'b' ]
// [ 'c', 'b', 'a' ]
for (var prod of G.cartesian([0, 1, 2], [0, 10, 20], [0, 100, 200])) {
console.log(prod);
}
// [ 0, 0, 0 ], [ 0, 0, 100 ], [ 0, 0, 200 ]
// [ 0, 10, 0 ], [ 0, 10, 100 ], [ 0, 10, 200 ]
// [ 0, 20, 0 ], [ 0, 20, 100 ], [ 0, 20, 200 ]
// [ 1, 0, 0 ], [ 1, 0, 100 ], [ 1, 0, 200 ]
// [ 1, 10, 0 ], [ 1, 10, 100 ], [ 1, 10, 200 ]
// [ 1, 20, 0 ], [ 1, 20, 100 ], [ 1, 20, 200 ]
// [ 2, 0, 0 ], [ 2, 0, 100 ], [ 2, 0, 200 ]
// [ 2, 10, 0 ], [ 2, 10, 100 ], [ 2, 10, 200 ]
// [ 2, 20, 0 ], [ 2, 20, 100 ], [ 2, 20, 200 ]
for (var num of G.baseN(['a', 'b', 'c'])) {
console.log(num);
}
// [ 'a', 'a', 'a' ], [ 'a', 'a', 'b' ], [ 'a', 'a', 'c' ]
// [ 'a', 'b', 'a' ], [ 'a', 'b', 'b' ], [ 'a', 'b', 'c' ]
// [ 'a', 'c', 'a' ], [ 'a', 'c', 'b' ], [ 'a', 'c', 'c' ]
// [ 'b', 'a', 'a' ], [ 'b', 'a', 'b' ], [ 'b', 'a', 'c' ]
// [ 'b', 'b', 'a' ], [ 'b', 'b', 'b' ], [ 'b', 'b', 'c' ]
// [ 'b', 'c', 'a' ], [ 'b', 'c', 'b' ], [ 'b', 'c', 'c' ]
// [ 'c', 'a', 'a' ], [ 'c', 'a', 'b' ], [ 'c', 'a', 'c' ]
// [ 'c', 'b', 'a' ], [ 'c', 'b', 'b' ], [ 'c', 'b', 'c' ]
// [ 'c', 'c', 'a' ], [ 'c', 'c', 'b' ], [ 'c', 'c', 'c' ]
Each array yielded from the generator is actually the same array in memory, just mutated to have different elements. This is to avoid the unnecessary creation of a bunch of arrays, which consume memory. As a result, you get a strange result when trying to generate an array.
var combs = G.combination(['a', 'b', 'c'], 2);
console.log([...combs]);
// [ [ 'b', 'c' ], [ 'b', 'c' ], [ 'b', 'c' ] ]
Instead, you can use the clone submodule.
var combs = G.clone.combination(['a', 'b', 'c'], 2);
console.log([...combs]);
// [ [ 'a', 'b' ], [ 'a', 'c' ], [ 'b', 'c' ] ]
This submodule produces generators that yield a different array on each iteration in case you need to mutate it. The combination, permutation, powerSet, permutationCombination, baseN, baseNAll, and cartesian methods are provided on this submodule.
var combs = G.clone.combination([1, 2, 3], 2);
// "for-of" loop
for (let comb of combs) {
console.log(comb);
}
// generate arrays
Array.from(combs);
[...combs];
// generate sets
new Set(combs);
// spreading in function calls
console.log(...combs);
No problem! Just pass in a collection of all your valid characters and start generating.
var mininym = G.baseNAll('abcdefghijklmnopqrstuvwxyz$#')
var name = mininym.next().value.join('')
global[name] = 'some value'
var cards = [...G.clone.cartesian('♠♥♣♦', 'A23456789JQK')];
console.log(G.shuffle(cards));
// [ [ '♦', '6' ], [ '♠', '6' ], [ '♣', '7' ], [ '♥', 'K' ],
// [ '♣', 'J' ], [ '♥', '4' ], [ '♦', '2' ], [ '♥', '9' ],
// [ '♦', 'Q' ], [ '♠', 'Q' ], [ '♠', '4' ], [ '♠', 'K' ],
// [ '♥', '3' ], [ '♥', '7' ], [ '♠', '5' ], [ '♦', '7' ],
// [ '♥', '5' ], [ '♣', 'Q' ], [ '♣', '9' ], [ '♠', 'A' ],
// [ '♣', '4' ], [ '♣', '3' ], [ '♥', 'A' ], [ '♥', '8' ],
// [ '♣', '8' ], [ '♦', '8' ], [ '♠', '8' ], [ '♣', '5' ],
// [ '♥', '2' ], [ '♥', 'Q' ], [ '♦', 'A' ], [ '♥', '6' ],
// [ '♠', '2' ], [ '♣', '6' ], [ '♠', '3' ], [ '♦', 'K' ],
// [ '♦', 'J' ], [ '♠', '7' ], [ '♥', 'J' ], [ '♦', '5' ],
// [ '♦', '9' ], [ '♦', '3' ], [ '♠', '9' ], [ '♣', '2' ],
// [ '♣', 'A' ], [ '♣', 'K' ], [ '♦', '4' ], [ '♠', 'J' ] ]
- G
- .factorial(n) ⇒
Number
- .factoradic(n) ⇒
Array
- .P(n, k) ⇒
Number
- .C(n, k) ⇒
Number
- .choices(n, k, [options]) ⇒
Number
- .combination(arr, [size]) ⇒
Generator
- .permutation(arr, [size]) ⇒
Generator
- .powerSet(arr) ⇒
Generator
- .permutationCombination(arr) ⇒
Generator
- .baseN(arr, [size]) ⇒
Generator
- .baseNAll(arr) ⇒
Generator
- .cartesian(...sets) ⇒
Generator
- .shuffle(arr) ⇒
Array
- .factorial(n) ⇒
Calculates a factorial
Kind: static method of G
Returns: Number
- n!
Param | Type | Description |
---|---|---|
n | Number |
The number to operate the factorial on. |
Converts a number to the factorial number system. Digits are in least significant order.
Kind: static method of G
Returns: Array
- digits of n in factoradic in least significant order
Param | Type | Description |
---|---|---|
n | Number |
Integer in base 10 |
Calculates the number of possible permutations of "k" elements in a set of size "n".
Kind: static method of G
Returns: Number
- n P k
Param | Type | Description |
---|---|---|
n | Number |
Number of elements in the set. |
k | Number |
Number of elements to choose from the set. |
Calculates the number of possible combinations of "k" elements in a set of size "n".
Kind: static method of G
Returns: Number
- n C k
Param | Type | Description |
---|---|---|
n | Number |
Number of elements in the set. |
k | Number |
Number of elements to choose from the set. |
Higher level method for counting number of possible combinations of "k" elements from a set of size "n".
Kind: static method of G
Returns: Number
- Number of possible combinations.
Param | Type | Description |
---|---|---|
n | Number |
Number of elements in the set. |
k | Number |
Number of elements to choose from the set. |
[options] | Object |
|
options.replace | Boolean |
Is replacement allowed after each choice? |
options.ordered | Boolean |
Does the order of the choices matter? |
Generates all combinations of a set.
Kind: static method of G
Returns: Generator
- yields each combination as an array
Param | Type | Default | Description |
---|---|---|---|
arr | Array | String |
The set of elements. | |
[size] | Number |
arr.length |
Number of elements to choose from the set. |
Generates all permutations of a set.
Kind: static method of G
Returns: Generator
- yields each permutation as an array
Param | Type | Default | Description |
---|---|---|---|
arr | Array | String |
The set of elements. | |
[size] | Number |
arr.length |
Number of elements to choose from the set. |
Generates all possible subsets of a set (a.k.a. power set).
Kind: static method of G
Returns: Generator
- yields each subset as an array
Param | Type | Description |
---|---|---|
arr | Array | String |
The set of elements. |
Generates the permutation of the combinations of a set.
Kind: static method of G
Returns: Generator
- yields each permutation as an array
Param | Type | Description |
---|---|---|
arr | Array | String |
The set of elements. |
Generates all possible "numbers" from the digits of a set.
Kind: static method of G
Returns: Generator
- yields all digits as an array
Param | Type | Default | Description |
---|---|---|---|
arr | Array | String |
The set of digits. | |
[size] | Number |
arr.length |
How many digits will be in the numbers. |
Infinite generator for all possible "numbers" from a set of digits.
Kind: static method of G
Returns: Generator
- yields all digits as an array
Param | Type | Description |
---|---|---|
arr | Array | String |
The set of digits |
Generates the cartesian product of the sets.
Kind: static method of G
Returns: Generator
- yields each product as an array
Param | Type | Description |
---|---|---|
...sets | Array | String |
variable number of sets of n elements. |
Shuffles an array in place using the Fisher–Yates shuffle.
Kind: static method of G
Returns: Array
- a random, unbiased perutation of arr
Param | Type | Description |
---|---|---|
arr | Array |
A set of elements. |