forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plan.go
302 lines (244 loc) · 9.22 KB
/
plan.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package plan
import (
"fmt"
"math"
"github.com/pingcap/tidb/ast"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/plan/property"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tipb/go-tipb"
"github.com/pkg/errors"
)
// Plan is the description of an execution flow.
// It is created from ast.Node first, then optimized by the optimizer,
// finally used by the executor to create a Cursor which executes the statement.
type Plan interface {
// Get the schema.
Schema() *expression.Schema
// Get the ID.
ID() int
// Get the ID in explain statement
ExplainID() string
// replaceExprColumns replace all the column reference in the plan's expression node.
replaceExprColumns(replace map[string]*expression.Column)
context() sessionctx.Context
// property.StatsInfo will return the property.StatsInfo for this plan.
statsInfo() *property.StatsInfo
}
func enforceProperty(p *property.PhysicalProperty, tsk task, ctx sessionctx.Context) task {
if p.IsEmpty() || tsk.plan() == nil {
return tsk
}
tsk = finishCopTask(ctx, tsk)
sortReqProp := &property.PhysicalProperty{TaskTp: property.RootTaskType, Cols: p.Cols, ExpectedCnt: math.MaxFloat64}
sort := PhysicalSort{ByItems: make([]*ByItems, 0, len(p.Cols))}.init(ctx, tsk.plan().statsInfo(), sortReqProp)
for _, col := range p.Cols {
sort.ByItems = append(sort.ByItems, &ByItems{col, p.Desc})
}
return sort.attach2Task(tsk)
}
// LogicalPlan is a tree of logical operators.
// We can do a lot of logical optimizations to it, like predicate pushdown and column pruning.
type LogicalPlan interface {
Plan
// PredicatePushDown pushes down the predicates in the where/on/having clauses as deeply as possible.
// It will accept a predicate that is an expression slice, and return the expressions that can't be pushed.
// Because it might change the root if the having clause exists, we need to return a plan that represents a new root.
PredicatePushDown([]expression.Expression) ([]expression.Expression, LogicalPlan)
// PruneColumns prunes the unused columns.
PruneColumns([]*expression.Column)
// findBestTask converts the logical plan to the physical plan. It's a new interface.
// It is called recursively from the parent to the children to create the result physical plan.
// Some logical plans will convert the children to the physical plans in different ways, and return the one
// with the lowest cost.
findBestTask(prop *property.PhysicalProperty) (task, error)
// buildKeyInfo will collect the information of unique keys into schema.
buildKeyInfo()
// pushDownTopN will push down the topN or limit operator during logical optimization.
pushDownTopN(topN *LogicalTopN) LogicalPlan
// deriveStats derives statistic info between plans.
deriveStats() (*property.StatsInfo, error)
// preparePossibleProperties is only used for join and aggregation. Like group by a,b,c, all permutation of (a,b,c) is
// valid, but the ordered indices in leaf plan is limited. So we can get all possible order properties by a pre-walking.
// Please make sure that children's method is called though we may not need its return value,
// so we can prepare possible properties for every LogicalPlan node.
preparePossibleProperties() [][]*expression.Column
// exhaustPhysicalPlans generates all possible plans that can match the required property.
exhaustPhysicalPlans(*property.PhysicalProperty) []PhysicalPlan
extractCorrelatedCols() []*expression.CorrelatedColumn
// MaxOneRow means whether this operator only returns max one row.
MaxOneRow() bool
// findColumn finds the column in basePlan's schema.
// If the column is not in the schema, returns an error.
findColumn(*ast.ColumnName) (*expression.Column, int, error)
// Get all the children.
Children() []LogicalPlan
// SetChildren sets the children for the plan.
SetChildren(...LogicalPlan)
}
// PhysicalPlan is a tree of the physical operators.
type PhysicalPlan interface {
Plan
// attach2Task makes the current physical plan as the father of task's physicalPlan and updates the cost of
// current task. If the child's task is cop task, some operator may close this task and return a new rootTask.
attach2Task(...task) task
// ToPB converts physical plan to tipb executor.
ToPB(ctx sessionctx.Context) (*tipb.Executor, error)
// ExplainInfo returns operator information to be explained.
ExplainInfo() string
// getChildReqProps gets the required property by child index.
getChildReqProps(idx int) *property.PhysicalProperty
// StatsCount returns the count of property.StatsInfo for this plan.
StatsCount() float64
// Get all the children.
Children() []PhysicalPlan
// SetChildren sets the children for the plan.
SetChildren(...PhysicalPlan)
// ResolveIndices resolves the indices for columns. After doing this, the columns can evaluate the rows by their indices.
ResolveIndices()
}
type baseLogicalPlan struct {
basePlan
taskMap map[string]task
self LogicalPlan
maxOneRow bool
children []LogicalPlan
}
func (p *baseLogicalPlan) MaxOneRow() bool {
return p.maxOneRow
}
type basePhysicalPlan struct {
basePlan
childrenReqProps []*property.PhysicalProperty
self PhysicalPlan
children []PhysicalPlan
}
func (p *basePhysicalPlan) getChildReqProps(idx int) *property.PhysicalProperty {
return p.childrenReqProps[idx]
}
// ExplainInfo implements PhysicalPlan interface.
func (p *basePhysicalPlan) ExplainInfo() string {
return ""
}
func (p *baseLogicalPlan) getTask(prop *property.PhysicalProperty) task {
key := prop.HashCode()
return p.taskMap[string(key)]
}
func (p *baseLogicalPlan) storeTask(prop *property.PhysicalProperty, task task) {
key := prop.HashCode()
p.taskMap[string(key)] = task
}
func (p *baseLogicalPlan) buildKeyInfo() {
for _, child := range p.children {
child.buildKeyInfo()
}
switch p.self.(type) {
case *LogicalLock, *LogicalLimit, *LogicalSort, *LogicalSelection, *LogicalApply, *LogicalProjection:
p.maxOneRow = p.children[0].MaxOneRow()
case *LogicalMaxOneRow:
p.maxOneRow = true
}
}
func newBasePlan(ctx sessionctx.Context, tp string) basePlan {
ctx.GetSessionVars().PlanID++
id := ctx.GetSessionVars().PlanID
return basePlan{
tp: tp,
id: id,
ctx: ctx,
}
}
func newBaseLogicalPlan(ctx sessionctx.Context, tp string, self LogicalPlan) baseLogicalPlan {
return baseLogicalPlan{
taskMap: make(map[string]task),
basePlan: newBasePlan(ctx, tp),
self: self,
}
}
func newBasePhysicalPlan(ctx sessionctx.Context, tp string, self PhysicalPlan) basePhysicalPlan {
return basePhysicalPlan{
basePlan: newBasePlan(ctx, tp),
self: self,
}
}
func (p *baseLogicalPlan) extractCorrelatedCols() []*expression.CorrelatedColumn {
corCols := make([]*expression.CorrelatedColumn, 0, len(p.children))
for _, child := range p.children {
corCols = append(corCols, child.extractCorrelatedCols()...)
}
return corCols
}
// PruneColumns implements LogicalPlan interface.
func (p *baseLogicalPlan) PruneColumns(parentUsedCols []*expression.Column) {
if len(p.children) == 0 {
return
}
p.children[0].PruneColumns(parentUsedCols)
}
// basePlan implements base Plan interface.
// Should be used as embedded struct in Plan implementations.
type basePlan struct {
tp string
id int
ctx sessionctx.Context
stats *property.StatsInfo
}
func (p *basePlan) replaceExprColumns(replace map[string]*expression.Column) {
}
// ID implements Plan ID interface.
func (p *basePlan) ID() int {
return p.id
}
// property.StatsInfo implements the Plan interface.
func (p *basePlan) statsInfo() *property.StatsInfo {
return p.stats
}
func (p *basePlan) ExplainID() string {
return fmt.Sprintf("%s_%d", p.tp, p.id)
}
// Schema implements Plan Schema interface.
func (p *baseLogicalPlan) Schema() *expression.Schema {
return p.children[0].Schema()
}
// Schema implements Plan Schema interface.
func (p *basePhysicalPlan) Schema() *expression.Schema {
return p.children[0].Schema()
}
// Children implements LogicalPlan Children interface.
func (p *baseLogicalPlan) Children() []LogicalPlan {
return p.children
}
// Children implements PhysicalPlan Children interface.
func (p *basePhysicalPlan) Children() []PhysicalPlan {
return p.children
}
// SetChildren implements LogicalPlan SetChildren interface.
func (p *baseLogicalPlan) SetChildren(children ...LogicalPlan) {
p.children = children
}
// SetChildren implements PhysicalPlan SetChildren interface.
func (p *basePhysicalPlan) SetChildren(children ...PhysicalPlan) {
p.children = children
}
func (p *basePlan) context() sessionctx.Context {
return p.ctx
}
func (p *baseLogicalPlan) findColumn(column *ast.ColumnName) (*expression.Column, int, error) {
col, idx, err := p.self.Schema().FindColumnAndIndex(column)
if err == nil && col == nil {
err = errors.Errorf("column %s not found", column.Name.O)
}
return col, idx, errors.Trace(err)
}