-
Notifications
You must be signed in to change notification settings - Fork 4
/
pytsne.py
172 lines (141 loc) · 5.04 KB
/
pytsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#
# tsne.py
#
# Implementation of t-SNE in Python. The implementation was tested on Python 2.5.1, and it requires a working
# installation of NumPy. The implementation comes with an example on the MNIST dataset. In order to plot the
# results of this example, a working installation of matplotlib is required.
# The example can be run by executing: ipython tsne.py -pylab
#
#
# Created by Laurens van der Maaten on 20-12-08.
# Copyright (c) 2008 Tilburg University. All rights reserved.
import numpy as np
from pylab import scatter
def Hbeta(D = np.array([]), beta = 1.0):
"""Compute the perplexity and the P-row for a specific value of the precision of a Gaussian distribution."""
# Compute P-row and corresponding perplexity
P = np.exp(-D.copy() * beta);
sumP = sum(P);
H = np.log(sumP) + beta * np.sum(D * P) / sumP;
P = P / sumP;
return H, P;
def x2p(X = np.array([]), tol = 1e-5, perplexity = 30.0):
"""Performs a binary search to get P-values in such a way that each conditional Gaussian has the same perplexity."""
# Initialize some variables
print("Computing pairwise distances...")
(n, d) = X.shape;
sum_X = np.sum(np.square(X), 1);
D = np.add(np.add(-2 * np.dot(X, X.T), sum_X).T, sum_X);
P = np.zeros((n, n));
beta = np.ones((n, 1));
logU = np.log(perplexity);
# Loop over all datapoints
for i in range(n):
# Print progress
if i % 500 == 0:
print("Computing P-values for point ", i, " of ", n, "...")
# Compute the Gaussian kernel and entropy for the current precision
betamin = -np.inf;
betamax = np.inf;
Di = D[i, np.concatenate((np.r_[0:i], np.r_[i+1:n]))];
(H, thisP) = Hbeta(Di, beta[i]);
# Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while np.abs(Hdiff) > tol and tries < 50:
# If not, increase or decrease precision
if Hdiff > 0:
betamin = beta[i];
if betamax == np.inf or betamax == -np.inf:
beta[i] = beta[i] * 2;
else:
beta[i] = (beta[i] + betamax) / 2;
else:
betamax = beta[i];
if betamin == np.inf or betamin == -np.inf:
beta[i] = beta[i] / 2;
else:
beta[i] = (beta[i] + betamin) / 2;
# Recompute the values
(H, thisP) = Hbeta(Di, beta[i]);
Hdiff = H - logU;
tries = tries + 1;
# Set the final row of P
P[i, np.concatenate((np.r_[0:i], np.r_[i+1:n]))] = thisP;
# Return final P-matrix
print("Mean value of sigma: ", np.mean(np.sqrt(1 / beta)))
return P;
def pca(X = np.array([]), no_dims = 50):
"""Runs PCA on the NxD array X in order to reduce its dimensionality to no_dims dimensions."""
print("Preprocessing the data using PCA...")
(n, d) = X.shape;
X = X - np.tile(np.mean(X, 0), (n, 1));
(l, M) = np.linalg.eig(np.dot(X.T, X));
Y = np.dot(X, M[:, 0:no_dims]);
return Y;
def run_tsne(X = np.array([]), no_dims = 2, initial_dims = 50, perplexity = 30.0):
"""Runs t-SNE on the dataset in the NxD array X to reduce its dimensionality to no_dims dimensions.
The syntaxis of the function is Y = tsne.tsne(X, no_dims, perplexity), where X is an NxD NumPy array."""
# Check inputs
if X.dtype != "float64":
print("Error: array X should have type float64.");
return -1;
#if no_dims.__class__ != "<type 'int'>": # doesn't work yet!
# print "Error: number of dimensions should be an integer.";
# return -1;
# Initialize variables
X = pca(X, initial_dims);
(n, d) = X.shape;
max_iter = 1000;
initial_momentum = 0.5;
final_momentum = 0.8;
eta = 500;
min_gain = 0.01;
Y = np.random.randn(n, no_dims);
dY = np.zeros((n, no_dims));
iY = np.zeros((n, no_dims));
gains = np.ones((n, no_dims));
# Compute P-values
P = x2p(X, 1e-5, perplexity);
P = P + np.transpose(P);
P = P / np.sum(P);
P = P * 4; # early exaggeration
P = np.maximum(P, 1e-12);
# Run iterations
for iter in range(max_iter):
# Compute pairwise affinities
sum_Y = np.sum(np.square(Y), 1);
num = 1 / (1 + np.add(np.add(-2 * np.dot(Y, Y.T), sum_Y).T, sum_Y));
num[list(range(n)), list(range(n))] = 0;
Q = num / np.sum(num);
Q = np.maximum(Q, 1e-12);
# Compute gradient
PQ = P - Q;
for i in range(n):
dY[i,:] = np.sum(np.tile(PQ[:, i] * num[:, i], (no_dims, 1)).T * (Y[i,:] - Y), 0);
# Perform the update
if iter < 20:
momentum = initial_momentum
else:
momentum = final_momentum
gains = (gains + 0.2) * ((dY > 0) != (iY > 0)) + (gains * 0.8) * ((dY > 0) == (iY > 0));
gains[gains < min_gain] = min_gain;
iY = momentum * iY - eta * (gains * dY);
Y = Y + iY;
Y = Y - np.tile(np.mean(Y, 0), (n, 1));
# Compute current value of cost function
if (iter + 1) % 10 == 0:
C = np.sum(P * np.log(P / Q));
print("Iteration ", (iter + 1), ": error is ", C)
# Stop lying about P-values
if iter == 100:
P = P / 4;
# Return solution
return Y;
if __name__ == "__main__":
print("Run Y = tsne.tsne(X, no_dims, perplexity) to perform t-SNE on your dataset.")
print("Running example on 2,500 MNIST digits...")
X = np.loadtxt("mnist2500_X.txt");
labels = np.loadtxt("mnist2500_labels.txt");
Y = tsne(X, 2, 50, 20.0);
scatter(Y[:, 0], Y[:, 1], 20, labels);